
MODELING AND OPTIMIZATION OF
LATENCY IN ERASURE-CODED
STORAGE SYSTEMS

Vaneet Aggarwal, Tian Lan, Parimal Parag

2

OUR TEAM

Vaneet Aggarwal

Purdue

Tian Lan

GWU

Parimal Parag

IISc

PART 1: INTRODUCTION

5

• Growth in personal cloud storage and
sharing of photos/videos/documents

• The global cloud storage market size is
projected to grow from USD 50.1
billion in 2020 to USD 137.3 billion by
2025, at a Compound
Annual Growth Rate (CAGR) of 22.3%
during the forecast period
(MarketsandMarkets.com).

GROWTH IN CLOUD STORAGE

Rate Requirements

6

EVOLVING DIGITAL LANDSCAPE

7

• Modeling, characterization, and optimization of latency for distributed
storage systems

KEY PROBLEM IN THIS TUTORIAL

11

WHAT IS AN ERASURE CODE?

• Erasure Code (EC) involves encoding the message in a redundant manner

• EC transforms message of k symbols to n symbols

12

• Erasure Code (EC) involves encoding the message in a redundant manner

• EC transforms message of k symbols to n symbols

• There exists a set of k un-erased symbols for recovery

• For MDS codes, any k un-erased symbols suffice (e.g., Reed-Solomon codes)

WHAT IS AN ERASURE CODE?

14

• Key Questions:
– What is the choice of scheduling strategy?
– How to characterize different measures of latency?
– How much redundancy to add?
– What is the optimal placement for coded chunks?
–

17

OPTIMAL SCHEDULING IS HARD

Erasure-coded storage. Scheduling problem.

21

FORK-JOIN SCHEDULING

22

• Probabilistic scheduling chooses different k-subsets with some probability
– Xiang, Lan, Aggarwal, Chen (2014, 2016), Aggarwal, Fan, Lan

(2017), Alabbasi, Aggarwal, Lan (2019), Wang, Harchol-

23

• Delayed-Relaunch scheduling: Job at some servers are started with a delay
based on completion of some tasks.
– Badita, Parag, Aggarwal (2020, 2021)

DELAYED-RELAUNCH SCHEDULING

24

COMPARISON OF STATE-

25

COMPARISON OF STATE-OF-ART: ANALYSIS RESULTS

26

27

• Introduction

• Fork-join scheduling

• Probabilistic scheduling

• Delayed-Relaunch scheduling

• Evaluations and other applications

OUTLINE

28

• AT&T Research: Yih-Farn Robin Chen (now retired), Moo-Ryong Ra (now at Amazon), Vinay Vaishampayan
(now at City University of NY), Chao Tian (now at Texas A&M University)

• Purdue University: Abubakr Al-Abbasi (now at Qualcomm), Jingxian Fan (now at Google), and Ciyuan Zhang

• George Washington University: Yu Xiang (now at AT&T)

• IISc Bangalore: Ajay Badita (now at IOTA), Rooji Jinan, Saraswathy Ramanathan, Vikram Srinivasan

• IIT Madras: Pradeep Sarvepalli

• Rutgers University: Rawad Bitar (now at TUM), Salim El Rouayheb

• Texas A&M University: Jean-Francois Chamberland

• University of Illinois, Chicago: Balajee Vamanan

• Funding:

– NSF CNS 161860061035 720 540 re

f*

Q

 EMC /Art1f3X2a0ang (en-US)>> BDC q

0.000010729 0 720 540h51* n

BT

/F5 11.16 Tf

1 0 0 1 44.856 1931.5 Tm

1 0.447 0 rg

1 0.447 0 RG
5ean

29• Promotion Code: 994513

STORAGE BOOK

PART 2: FORK-JOIN SCHEDULINGTian Lan, ECE@GWU

2

RECAP

Scheduling problem in erasure-coded storage.

4

FORK-JOIN SYSTEM

1234

1

1

2

ߤ

2

5

STABILITY OF FORK-JOIN SYSTEM

• Proof outline:

– When ݇ out of the ݊ tasks finish service, the remaining ݊ െ ݇ tasks abandon

their queues

– A task can be one of the abandoning tasks with probability ሺ݊ െ ݇ሻȀ݊.

– The effective arrival rate to each queue is ߣ minus abandonment ߣሺ݊ െ ݇ሻȀ݊.

– ߣ െ ߣ ݊ െ ݇ Ȁ݊ ൏ ߤ gives the condition.

For the ݊ǡ ݇ fork-join system to be stable, the Poisson arrival rate ߣ
and the service rate ߤ per server must satisfy ߣ ൏ Ȁ݇Ǥߤ݊

7

CHALLENGES OF ANALYZING FORK-JOIN

Fork-join:

• Recall: Latency is defined as the average time spent in the fork-join system.

• Analyzing the waiting time using Markov Chains requires:

– Modeling individual queue evolutions that are dependent

– Encapsulating the execution history in MC

8

LATENCY ANALYSIS USING SPLIT-MERGE QUEUES

Fork-join:

Split-merge:

Split-merge queues provide an upper bound on fork-join.

9

LATENCY UPPER BOUND

Ȉ ሺ݊ǡ ݇ሻ split-merge is equivalent to an ܯȀܩȀͳ queue.

– Arrivals are Poison with rate ߣǤ

– Service time ܵ is the ݇th order statistic.

• Find �ሾܵሿ and ��� ܵ ǣ

– Independent services times at the servers.

– Analyze the ݇th order statistic of exponential distributions of ͳȀߤ.

• Compute the average latency:

– Use the Pollaczek-Khinchin formula for ܯȀܩȀͳ queue.

• It gives an upper bound on the latency of fork-join system.

10

LATENCY UPPER BOUND

• Given i.i.d. service times ଵܺǡ ܺଶ ǥ ǡ ܺ௡.

• Equivalent service time ܵ ൌ ܺሺ௞ሻ, i.e., the ݇th smallest of ଵܺǡ ܺଶ ǥ ǡ ܺ௡Ǥ

• Distribution for ݇th order statistic:

– ௫݂

11

LATENCY UPPER BOUND

• The Pollaczek-Khinchin formula for ܯȀܩȀͳ queue with service time ܵ:

• Substituting the values of �ሾܵሿ and ��� ܵ , we find an upper bound on

the latency of fork-join systems.

ܶ ൌ ܧ ܵ ൅
ܧሺߣ ܵ ଶ ൅ ݎܽݒ ܵ ሻ

ʹሺͳ െ ሾܵሿሻܧߣ

16

LATENCY LOWER BOUND

The expected latency ሺܶ௡ǡ௞ሻ for an

17

NUMERICAL EXAMPLES

Arrival rate 1=ߣ and service rate 10=ߤ.

1 Joshi, Soljanin, Wornell (2015).

Arrival rate 1=ߣ and service rate 1.25=ߤ.

18

20

LATENCY ANALYSIS USING TANDEM QUEUES

The expected latency ሺܶ௡ǡ௞ሻ for an ݊ǡ ݇ fork-join system can be

approximated by:

ሺܶ௡ǡ௞ሻ ൎ ෍

௝ୀ଴

௞ିଵ
ͳ

݊ െ ݆ ߤ െ ሺ݇ െ ݆ሻߣ
Ǥ

• The lower bound is valid only when ݇ߣ ൏ Ǥߤ݊

• This stability condition is the same as that of fork-join systems.

22

NUMERICAL EXAMPLES

We choose arrival rate ߣ ൌ ͲǤ͵ǡ and service rate ߤ ൌ ݇Ȁ݊ ൌ ͲǤͷ.

23

GENERALIZATIONS

• i.i.d. and general service times:

– Joshi et al., 2014, Joshi et al., 2017.

• Each file ݅ encoded using an ሺ݊ǡ ݇௜ሻ code and has arrival rate ߣ௜ :

– Kumar et al., 2017.

24

SUMMARY

• Fork-join systems provide an analytical framework for the study of

erasure-coded storage, e.g.,

– minimizing file access latency.

– optimizing coding strategy.

• Upper and lower bounds to analyze the latency of general codes.

• A tight closed-form approximation of average latency.

• Average latency is better for MDS codes for all code

25

OPEN PROBLEMS FOR FORK-JOIN SYSTEMS

• Tight upper bound:

– There is still a large gap between the upper bound and the optimal

stability conditions even for exponential service times.

• General file placement:

– When each file is placed on a subset of the servers, no latency result is

available for this general setting.

• Heterogeneous servers:

– Analyzing the latency for heterogeneous servers with different service

time distribution is still an open problem.

• Approximations and guarantees:

– In the asymptotic regime?

PART 3: PROBABILISTIC
SCHEDULING

2

• Question: Which k subsets to choose

• Probabilistic scheduling: Choose all possible (n
choose k) subsets with certain probabilities

PROBABILISTIC SCHEDULING

3

• Probabilistic scheduling: Choose all possible (n
choose k) subsets with certain probabilities

• Since this is a scheme, it upper bounds the
latency of the optimal scheme

• Number of probability terms to optimize: (n
choose k) – hard problem

• Question: Can reduce terms?

PROBABILISTIC SCHEDULING

4

Theorem [Xiang Lan Aggarwal Chen 2014]

Given node selection probabilities ∏ij, there exists a scheme with
feasible load balancing P(Ai), where Ai are k-subsets, if and only if

PROBABILITY OVER SUBSETS -> PROBABILITY OVER NODES

5

• Necessity: Given the set probability, we can find node probability.

• This is because when set is chosen, all nodes are chosen.

• Thus, node probability is the sum of all set probabilities such that the
node is part of the set.

Theorem [Xiang Lan Aggarwal Chen 2014]

Given node selection probabilities ∏ij, there exists a scheme with
feasible load balancing P(Ai), where Ai are k-subsets, if and only if

PROBABILITY OVER SUBSETS -> PROBABILITY OVER NODES

6

•

•
o

7

• This result demonstrates that independent node selection is sufficient.

Theorem [Xiang Lan Aggarwal Chen 2014]

Given node selection probabilities ∏ij, there exists a scheme with
feasible load balancing P(Ai), where Ai are k-subsets, if and only if

PROBABILITY OVER SUBSETS -> PROBABILITY OVER NODES

8

• Probabilistic Scheduling: Choose all possible
(n choose k) subsets with certain probabilities

• Probability over independent servers is
equivalent

• Now, request at each server with certain
probability and thus Poisson.

•

9

11

•

13

• Bounding max by sum in moment generating function would only give a
logarithmic gap in latency.

• This result allows multiple contents, state of the art has single file. Even for
single file, our bound is better for general distribution.

15

• Users are impatient.

• Increase in delay of web traffic
leads to loss of customers,
significantly affecting revenues.

TAIL LATENCY

• Long tail of latency is of particular concern, with 99.9th percentile

16

• Tail Latency of a file from a server is given as

• Overall tail latency can be computed using ordered statistics

TAIL LATENCY CALCULATIONS

18

• Using tail latency of the individual W, overall tail latency can be bounded as:

TAIL LATENCY CALCULATIONS

19

TAIL LATENCY INDEX

• File-sizes are heavy tailed [Aggarwal et al., ICC3, 2013].

• Cdf of chunk size is given as Pareto Distribution with index ⍺

• What is tail index of Latency?

20

TAIL LATENCY INDEX

• File-sizes are heavy tailed [Aggarwal et al., ICC3, 2013].

• Cdf of chunk size is given as Pareto Distribution with index ⍺

• What is tail index of Latency?

• Ans: ceil(⍺-1)

• Probabilistic scheduling is optimal for tail index.

22

OPEN PROBLEMS FOR PROBABILISTIC SCHEDULING SYSTEMS

• Sub-packetization:

– Sub-packetization can be used to access data from more servers with a

smaller part accessed from each server. For same size content from

each server, it is simple corollary, how about scheduling approach to

determine size of content from each server?

•

2/ 10

Coded access model

1 A1

2 A2

3 A1�A2

4 A1 +A2

Latency energy tradeo�

I Parallelization leads to download speedup

I Redundancy leads to increased energy consumption

3/ 10

Coded access model

S(0)

4/ 10

Coded access model
c-shifted unit-rate exponential download times

S(0) S(1) S(2) S(3) S(4) S(5) S(6)

initial
servers
n0 = 10

S1
S2

S5
S6

S8
S9

Download times (S1; : : : ; Sn)

5/ 10

To code or not code?
Shifted exponential download times

1 A1

2 A2

3 A1�A2

4 A1 +A2

(n; k

6/ 10

Forking additional servers

1f1(A)

2f2(A)

3f3(A)

4f4(A)

5f5(A)

6f6(A)

7f7(A)

8f8(A)

9f9(A)

10f10(A)

in
it

ia
l

se
rv

er
s

fo
rk

ed
se

rv
er

s

Delayed start of requests in
multiple stages

I Stage i starts with download
from additional ni servers

I Stage i ends when
downloaded from ‘i servers

I Design variables are (ni ; ‘i)
for each stage i

7/ 10

Performance Metric Computation

0 1 2 3 4 5 6 7 8

8/ 10

Initial servers n0 smaller than sub-tasks k

2 4 6 8 10 12
45

46

47

48

Fork task threshold

M
ea

n
ut

ili
za

ti
on

co
st

n0=24, No Forking

n0=11

n0=9

n0=7

n0=5

PART 5: EVALUATIONS AND
OTHER APPLICATIONS

2

• Where to place content?

• What code parameters to choose?

• Which disks to choose for access when the
content is requested?

• Baseline:
– where to place contents: Random
– what code to use: Fixed
– from where should content be served: Lowest queue servers

REQUIREMENTS FOR A DISTRIBUTED STORAGE SYSTEM

3�{Where to place content?�{What code parameters to choose?�{Which disks to choose for access when the content is requested?�{Optimization Variables:�tCode Parameters�tContent Placement Servers�tAccess Probabilities from different servers (Latency bound as described before)�{Latency�t

4

VALIDATION ON OPEN SOURCE STORAGE SYSTEM

5

SETUP OF STORAGE SERVERS FOR VALIDATION

6

• 1000 files, size 150MB. Cost: $1 for 25MB, tradeoff factor of 200 sec/dollar,
chunk size 25MB

• Oblivious LB: Select nodes with probability proportional to service rate

• Random placement: Chooses best outcome of 100 random runs

JOINT OPTIMIZATION (CODE, PLACEMENT, ACCESS)
IS NEEDED

7

• 1000 files of size 150 MB, using erasure codes (12, 6), (10, 7), (10, 6), and
(8, 4), aggregate rate at 0.118/s.

LATENCY DISTRIBUTION

8

LATENCY INCREASES SUPER-LINEARLY WITH FILE SIZE

9

• Visualization of latency and cost tradeoff for file size of (150, 150, 100)MB
and arrival rates 1/(30 sec), 1/(30sec), 1/(40 sec).

TRADEOFF CURVES

10

• Caching

• Video streaming over Cloud

• Memory-constrained system

• Coded Computing

OTHER APPLICATIONS

11

• Caching

• Video streaming over Cloud

• Memory-constrained system

• Coded Computing

OTHER APPLICATIONS

12

• Caching is used to reduce

13

15

• Erasure Coded Systems
allow for functional caching

• Rather than exact chunks,
�{

16

• The latency calculations
remain the same as before
except that the number of
servers to access changes
from k to k-d.

• This helps reduce the
latency with caching.

• Specific choice of d chunks
in the cache will have also
change the possibility of
accessed servers, while
functional caching is more
flexible due to using (n+k,k)
rather than (n,k) code.

LATENCY CALCULATION WITH FUNCTIONAL CACHING

17

IMPACT OF FUNCTIONAL CACHING

1000 files 100 MB each, (n=7,k=4)
1000 files, (n=7,k=4), cache size 10GB

19

• Caching

•

20

GOLBAL APPLICATION TRAFFIC SHARE 2021

21

• Video streaming applications represents 62% of the Internet traffic in US

• More than 50% of over-the-top video traffic is now delivered through CDNs

MOTIVATION

• Video Streaming rather than file
download.

• Each chunk is erasure-coded

• Coded chunks on server

• Ques: How does servers stream
video?

22

VIDEO STREAMING

• Video Streaming rather than file download.

• Ques: How does servers stream video?

• Approach

• Metric: Stall Duration. Very different from download time since stalls happen
anywhere, and all correlated segments need to be accounted.

• Characterized mean and tail of stall durations for this model.
24

STALL DURATION

• Compute the time in the queue for each server. Consider the entire data of a
file in server j, the requests are still Poisson.

•

26

BEYOND SINGLE TIER

27

BEYOND SINGLE TIER

• Multiple CDNs

• Caching at CDNs

• Caching in Edge cache

• Edge cache allows for multicast
since a later user can get previous
content from cache.

• CDN Cache policy: How many
initial chunks of each file?

• Edge Cache policy: Each requested
file is cached for a certain time,
and if not re-requested removed.

28

OPTIMIZATION PARAMETERS AND METRIC

• Access probabilities for CDNs, and
the different streams from CDN

29

OPENSTACK IMPLEMENTATION RESULT

• CHF: Caching hot files, PSP: projected proportional service, PEA: Equal
probability access, PEC: Projected Equal Caching.

• New framework for video streaming over CDN

• Gave new bounds for stall duration with multiple flexibilities

• The results demonstrate improved performance metrics

• Single Tier

– Alabassi and Aggarwal, "Video Streaming in Distributed Erasure-coded Storage Systems:
Stall Duration Analysis," IEEE/ACM Transactions on Networking, vol. 26, no. 4, pp. 1921-
1932, Aug. 2018.

– Al-Abbasi and Aggarwal, "VidCloud: Joint Stall and Quality Optimization for Video
Streaming over Cloud," ACM Transactions on Modeling and Performance Evaluation of
Computing Systems, article no. 17, Jan 2021

• Multi-Tier

– Alabbasi, Aggarwal, Lan, Xiang, Ra, and Chen, "FastTrack: Minimizing Stalls for CDN-
based Over-the-top Video Streaming Systems," Accepted to IEEE Transactions on Cloud
Computing, Jun 2019.

– Alabbasi, Aggarwal, and Ra, "Multi-tier Caching Analysis in CDN-based Over-the-top
Video Streaming Systems," IEEE/ACM Transactions on Networking, vol. 27, no. 2, pp.
835-847, April 2019.

30

SUMMARY

31

• Caching

• Video streaming over Cloud

• Memory-constrained system

• Coded Computing

OTHER APPLICATIONS

32

MEMORY CONSTRAINED SYSTEM

33

STORAGE MODEL: PLACEMENT

34

LATENCY OPTIMAL STORAGE AND ACCESS

35

MDS CODED STORAGE

36

DECODING COMPLEXITY

• MDS coded storage is optimal for subfragmented storage

• Subfragmentation of file can lead to competitive performance of replication
coded storage

• When storage nodes have no memory constraints all coded storage have
identical latency performance

• Staircase coded storage
– Bitar, Parag, and Rouayheb, ``Minimizing latency for secure coded computing using secret

sharing via staircase codes,'' IEEE Transactions on Communications. 68(8):4609–4619, Aug
2020.

• Replication coded storage
– Jinan, Badita, Sarvepalli, Parag, ``Latency optimal storage and scheduling of replicated

fragments for memory-constrained servers,'' preprint, 2021.

39

SUMMARY

40

• Caching

• Video streaming over Cloud

• Memory-constrained system

• Coded Computing

OTHER APPLICATIONS

41

MATRIX MULTIPLICATION

42

DISTRIBUTED MATRIX MULTIPLICATION

43

REDUNDANCY FOR STRAGGLER MITIGATION

44

SUMMARY

2

• Modeling, characterization, and optimization of latency for distributed
storage systems

KEY PROBLEM IN THIS TUTORIAL

4

COMPARISON OF STATE-OF-ART: ASSUMPTIONS

5

COMPARISON OF KEY SCHEDULING STRATEGIES

6

NUMERICAL COMPARISON OF KEY SCHEDULING STRATEGIES

• MDS-Reservation and Fork-Join strategies do not achieve the optimal
stability region

• Probabilistic scheduling outperforms Fork-Join scheduling for all arrival
rates in this simulation

• Shifted
Exponential
Service Times, 12
servers

• Homogenous files
with (12,7) code

• Hyperparameter
search for
probabilistic

7• Promotion Code: 994513

THANK YOU

