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Information Theory and Probabilistic Modeling

Claude Elwood Shannon

Sources:  Random variables or random processes

Channels:  Stochastic functions of the output, given the input

𝑝(𝑠)

𝑝(𝑦|𝑥)



Basic Information Entities

• Entropy - H: a function of the source’s probability distribution
• Minimal number of bits required for lossless representation of the source

• Capacity- C: a function of the channel’s probabilistic model
• Maximal number of bits that can be transferred reliable via the channel

• Rate-Distortion – R(D): a function of the source’s probability distribution
• Minimal number of bits required for representing the source within a distortion D

The information entities depend on the probabilistic model of the source/channel



Communication Schemes

• The optimal communication performance given by the information entities can be attained
• At least for point-to-point communication

• The optimal schemes, encoders and decoders, depend on the probabilistic models

Unfortunately, the probabilistic model is unknown, 
sometimes non-existent

Sources and channels are varying, uncertain
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Universality

Model Independent Schemes

Yet, Attain Optimal Performance



Lossless Source Coding



The source coding problem

• Encode a source symbol 𝑥 or more generally a source sequence
𝑥 = 𝑥𝑛 =





The concept of Universal Probability

A single, universal 𝑸 𝒙

Can be used no matter what 𝑃 𝑥 is, even if it is non-existent!

1. Universality w.r.t a model class

2. Universality w.r.t a very large class of models (all ergodic sources..)

3. Twice/Hierarchical universality





The equivalence of coding and prediction with 
log-loss

• Prediction => Data compression:
• x1 x2 … xn is the data to encode, from a finite alphabet A

• The (deterministic) action bt is a probability vector assigned to xt

bt = {qt ( . | x1 x2 … xt-1)}

• The loss: l(bt , xt) = - log qt (xt | x1 x2 … xt-1) is the ideal codelength for encoding xt . 
Given the assigned distribution, an arithmetic coder can generate a code word with
ideal code length l(bt , xt)

• The accumulated loss is the total code length. It is also - log of the probability 
assigned to the entire sequence x1 x2 … xn , i.e, 

− log 𝑄 𝑥𝑛 = − log ෑ

𝑡=1

𝑛

𝑞𝑡 𝑥𝑡 𝑥𝑡−1) = − ෍

𝑡=1

𝑛

log 𝑞𝑡 𝑥𝑡 𝑥𝑡−1)



Universal Prediction with General Loss

• By coding (or prediction with log-loss) generate 𝑞(𝑥𝑡+1|𝑥𝑡)

• Apply “optimal decision” using the universal predicted probability?

෠𝑏𝑡+1 = arg min
𝑏

𝔼
𝑞 𝑥𝑡+1 𝑥𝑡 ℓ(𝑏, 𝑥)

• Not always! 
For example, for 0-1 loss need to “randomize” decision
(F-Merhav-Gutman 92)

• General Solution: Follow the “Perturbed Probability” (F-Lomnitz, 2013)



Universal Coding w.r.t a Model Class

A set of models 𝑃𝜃 𝑥𝑛 , 𝜃 ∈ Θ. “Hypotheses set”. 

• Stochastic setting:

• 𝑥𝑛 is generated by some model 𝑃𝜃 ∈ Θ.

• Stochastic mis-specified setting (sometimes “PAC setting”):
• 𝑥𝑛 is generated by some model 𝑃, not necessarily in Θ.

• Individual setting:

• 𝑥𝑛 is an arbitrary individual sequence. 
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A set of models 𝑃𝜃 𝑥𝑛 , 𝜃 ∈ Θ. “Hypotheses set”. 

• Stochastic setting:

• 𝑥𝑛 is generated by some model 𝑃𝜃 ∈ Θ.

• Stochastic mis-specified setting (sometimes “PAC setting”):
• 𝑥𝑛 is generated by some model 𝑃, not necessarily in Θ.

• Individual setting:

• 𝑥𝑛 is an arbitrary individual sequence. 

The Elephant in the room: How to choose the model class? 



Universal Coding w.r.t a Model Class Θ

• Criteria:

• Stochastic setting:
• Look for a universal assignment 𝑄 that minimizes the worst case “redundancy” 

𝑚𝑖𝑛𝑄𝑚𝑎𝑥𝜃 𝔼𝑃𝜃
log

𝑃𝜃

𝑄
= 𝑚𝑖𝑛𝑄𝑚𝑎𝑥𝜃𝐷(𝑃𝜃| 𝑄

• Stochastic -specified setting:
• Even if 𝑃 is known, cannot avoid:   𝑚𝑖𝑛𝜃∈Θ𝐷(𝑃| 𝑃𝜃 = 𝐷(𝑃||𝑃𝜃 𝑃 )

𝐷(𝑃| 𝑄 = 𝑚𝑖𝑛𝜃𝐷(𝑃|

𝑃

𝜃
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• Stochastic mis-specified setting:



The stochastic setting solution

 A Bayesian mixture, with a prior 𝑤 𝜃 over Θ:

𝑄 𝑥𝑛 = න 𝑤 𝜃 𝑃𝜃 𝑥𝑛 𝑑𝜃

 The Redundancy-Capaci0.000014305 0 960 540 re
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The solution in the mis-specified setting

• Assume the true 



The solution in the mis-specified setting

• Assume the true 𝑃 = 𝑃𝜙 belongs to a large class Φ



The solution in the individual setting

 The Normalized Maximum Likelihood (NML) solution (Shtarkov ‘87): 

𝑄 𝑥𝑛 = max𝜃𝑃𝜃 𝑥𝑛 / ׬ max𝜃𝑃𝜃 𝑥𝑛 d𝑥𝑛

Worst case regret (individual redundancy):

Γ𝑛(Θ) = log׬ max𝜃𝑃𝜃 𝑥𝑛 d𝑥𝑛 ≥ 𝐹𝑛

Θ𝑛≥𝑛Θ







Important Observations/Results

• The universal probabilities on all settings depend on the block size – known horizon

• For “nice” parametric classes with k parameters, asymptotically 

𝐶𝑛 Θ =
𝑘

2
log

𝑛

2𝜋𝑒
+ log Θ׬

|𝐼 𝜃 | Τ1
2𝑑𝜃 + 𝑜 1

Γ𝑛 Θ =
𝑘

2
log

𝑛

2𝜋
+ log න

Θ

|𝐼 𝜃 | ൗ1
2𝑑𝜃 + 𝑜 1

𝐹𝑛 (Θ, Φ) ≈ 𝐶𝑛

Where 𝐼 𝜃



What is “probability”?

The concept of probability is clear when there is an ensemble of 
possible outcomes. 

Probability: the “weight” of an event in the ensemble

But in reality there is only an empirical evidence and data!





Probability Calculus

Probability Theory that we can trust is probability calculus

How 



Using Probability Calculus

• If a prior 𝑤(𝜃) on the model class is postulated

A universal probability for prediction:

න
𝜃

𝑤 𝜃 𝑃𝜃 𝑥𝑡−1 𝑑𝜃

׬
𝜃′ 𝑤 𝜃′ 𝑃𝜃′ 𝑥𝑡−1 𝑑𝜃′

𝑃𝜃 𝑥𝑡 = 𝑥 𝑥𝑡−1) = න
𝜃

𝑤 𝜃 𝑥𝑡−1 𝑃𝜃 𝑥𝑡 = 𝑥 𝑥𝑡−1)𝑑



More on the Bayesian Solution

• Consider two completely different probability measures: 𝑃1 𝑥 , 𝑃2 𝑥

Suppose          𝐷(𝑃1|





Large Class of Models



Universality w.r.t a large class of models 

• A large class Θ of models may correspond to “unbounded complexity”

• Suppose it can be arranged as a union of simpler classes: ڂ𝑖 Θ𝑖 each 
with a universal probability 𝑄𝑖 and complexity 𝐶𝑖 , 𝐹𝑖 or Γ𝑖

• A typical situation is hierarchy of models Θ1 ⊆ Θ2 ⊆ ⋯
• Markov sources of growing order

• Finite-state models with a growing number of states. In this case the class Θ𝑠
of model with 𝑠 states is itself a union: of model classes Θ𝑠





FS Complexity of an Individual Sequence
• Lempel-Ziv 78 defined a Finite-State complexity measure of an individual sequence.

• The measure is the codelength (or log-loss) attained by any Finite-State machine of 
any size for that (infinite) sequence. 

• first, find the best FS model with 𝑆 states for 𝑥𝑛 (including its parameters)

• then, consider the normalized loss and let 𝑛 → ∞

• finally, let 𝑆 → ∞

FS predictability of the (infinite) sequence 𝑥

• This quantity is efficiently achievable by the Lempel-Ziv data compression scheme

• While not as general as Kolmogorov’s complexity, it is computable!



FS Complexity of an Individual Sequence
• Lempel-Ziv 78 defined a Finite-
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Entropy: Complexity measure in the stochastic case

Claude Elwood Shannon

Andrei Nikolaevich Kolmogorov Ray Solomonoff Gregory Chaitin

Algorithmic complexity of individual sequence

Finite-State complexity of individual sequence

Abraham Lempel Jacob Ziv



Entropy: Complexity measure in the stochastic case

Claude Elwood Shannon

Andrei Nikolaevich Kolmogorov Ray Solomonoff Gregory Chaitin

A



Prediction with Lempel-Ziv 78

• LZ78 algorithm implies an efficient sequential probability assignmet

• Incremental parsing: LZ78 parses the input sequence 𝑥𝑛into phrases, 

where each new phrase being the shortest substring that has not 

appeared so far in the parsing

• parsing is represented with a parsing tree

• The tree implies a probability assignment



• Example:

𝑥11= 00101010100

=0,01,010,1,0100

P(𝑥𝑡 = 0 | 𝑥𝑡−1) =
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F-Merhav-Gutman 92



Application: LeZi-Update: 
Track Mobile Users in PCS Networks

By building and maintaining a dictionary of individual user’s path updates (as opposed to the 
widely used location updates), LeZi adaptive on-line algorithm can learn subscribers’ profiles. 





Revisiting the Analysis of LZ-78:

• Example: x12 = 0 1 01 00 010 011

1         1         1   2         1   2          1  3        1      3        1      4         1



Proof of LZ78 universality
• Decision algorithm:

• at each time instant t, before observing xt, the algorithm points to the node in the 
tree reached by parsing xt-1

•



LZ convergence rate

• LZ attains the entropy, if the source is ergodic (stochastic setting), or 
attains the FS complexity (individual setting)

• How fast?
•



Twice/Multiple(Hierarchical) 
Universality



Twice Universality

• Model classes with different complexity (different 𝐶𝑖 , 𝐹𝑖 or Γ𝑖) 

• The source comes from a model in one of the classes 

• May consider Θ = ڂ Θ𝑖; however, this will lead to a large “redundancy”

• Depending on the data size, may take into account Θ𝑖’s that has negligible 
redundancy, and consider more as more data is available

• Preferred option: Twice Universality (originally, Ryabko, 1985)



Twice Universality

• Universal with respect to the choice of the model class!

• Suppose 𝑄𝑖 is the universal probability of the class Θ𝑖 -

Find a “twice universal” 𝑸 that can represent all the 𝑸𝒊’s  
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Universal with respect to the choice of the model class!

• Suppose 𝑄𝑖 is the universal probability of the class Θ𝑖 -

Find a “twice universal” 𝑸 that can represent all the 𝑸𝒊’s  

Seems like a good approach

For example, find 𝐶𝑇𝑊 = min
𝑄

max
𝑖

𝐷( 𝑄𝑖 ||𝑄)



Twice Universality
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Twice Universality

• Solution: Multiplicative regret.  Consider:         
log 𝑄

log 𝑄𝑖

In the individual case:    Let 𝑖 𝑥𝑛 = arg max
𝑖

𝑄𝑖(𝑥
𝑛)

Solve: min
𝑄

max
𝑥𝑛

log 𝑄(𝑥𝑛)

log 𝑄𝑖

𝑛

𝑄

𝑥



Twice Universality

• Solution: Multiplicative regret.  Consider:         
log 𝑄

log 𝑄𝑖

I



Twice Universality: Example

The universal representation of the integers

We wish to represent an integer universally, with number of bits proportional to its binary representation. Range can be all the integers!

Consider the classes [2,3], [4,5,6,7],….  Class Θ𝑖 contains 2𝑖 models. 

Simplest case – each model is deterministic on some sequence (value). In this case

𝑄𝑖 = 2−𝑖 ⇒ − log 𝑄𝑖 = 𝑖

Given the class, − log 𝑄𝑖 = log 𝑛 , 𝑛 the corresponding integer.

It turns out that a multiplicative universal probability should use  𝛼 = 2

Thus, 𝑄𝑇𝑊 = 2−2𝑖 ⇒ universal code for the integer requires 2 log 𝑛 bits

• Get Elias universal representation with an extra bit to specify the integer 1

• Can repeat the process for multiple universality – attain a representation with 𝑙𝑜𝑔∗(𝑛) bits
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Consider the classes [2,3], [4,5,6,7],….  Class Θ𝑖 contains 2𝑖 models. 
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𝑄𝑖 = 2−𝑖 ⇒ − log 𝑄𝑖 = 𝑖

Given the class, the codelength − log 𝑄𝑖 = log 𝑛 , 𝑛 the corresponding integer.

It turns out that a multiplicative universal probability should use  𝛼 = 2
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Twice Universality: Example



Twice Universality

https://scholar.google.co.il/scholar?cluster=12046575662556797114&hl=en&as_sdt=2005&sciodt=0,5


More on CTW

Weight all possible sub-trees of context 
to generate the twice universal probability

Effective weight of a tree with 𝑆 leaves: 2−



Are Deep Neural 
Networks Hierarchically 
Universal?



Learning Universally



`Batch’ Supervised Learning

• 𝒙𝑁−1, 𝒚𝑁−1



`Batch’ Supervised Learning

• 𝒙𝑁−1, 𝒚𝑁−1 are the training set

• Predict a new outcome 𝑦𝑁, given a new data sample 𝑥𝑁. 

Prediction: 𝑏𝑁 = 𝑃(∙ |𝑥𝑁; 𝑥𝑁−1, 𝑦𝑁−1)

• The loss ℓ 𝑏𝑁, 𝑦𝑁 = − log 𝑃 𝑦𝑁 𝑥𝑁; 𝑥𝑁−1, 𝑦𝑁−1 is the “
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`Batch’ Supervised Learning

• 𝒙𝑁−1, 𝒚𝑁−1 are the training set

• Predict a new outcome 𝑦𝑁, given a new data sample 𝑥𝑁. 

Prediction: 𝑏𝑁 = 𝑃(∙



Some Results 
(Fogel, F 2018 and after)

• Stochastic case: 
A Bayesian mixture over Θ with a prior 𝑤(𝜃)

max
𝑤

𝐼(Θ; 𝑌𝑁|𝑌𝑁−1, 𝑋𝑁) ≜ 𝑝𝐶𝑁(Θ)

• Mis-specified case: 
A mixture over the large class Φ with prior 𝑤(𝜙) that concentrates “near” Θ

max
𝑤

𝐼 Φ; 𝑌𝑁 𝑌𝑁−1, 𝑋𝑁 −





Universal Decoding



Optimal Decoding

• A codeword 𝑥 = 𝑥𝑛 is transmitted over a channel

• The codeword belongs to a codebook: 

𝑥 ∈ 𝐶 = 𝑥1, 𝑥2, … , 𝑥𝑀

• The channel output 𝑦 is observed

• The channel law is given: 𝑃(



Competitive Minimax Universal Decoder
(F- Merhav 2002)

• A codeword 𝑥 = 𝑥𝑛 is transmitted over a channel, 𝑥 ∈ 𝐶 = 𝑥1, 𝑥2, … , 𝑥𝑀

• The channel output 𝑦 is observed

• A class of possible channels  𝑃𝜃(𝑦|𝑥), 𝜃 ∈ Θ is assumed (the “stochastic case”)

• The decoding problem is 𝑀 composite hypotheses testing problem
• Classical statistics suggests to use the Generalized Likelihood Ratio Test (GLRT). But why? 

Can we define an “optimal” universal decoder?



Competitive Minimax Universal Decoder



Competitive Minimax Universal Decoder

• If the channel is known, an ML decoder can be used (assuming uniform distribution over the codewords) 

• The optimal decoder attains an optimal error probability 𝑃𝑒
∗ 𝜃

• Any decoder is a partition Ω of the observation space 𝒴𝑛 to Ω1, … , Ω𝑀

• A competitive min-max criterion:

𝑚𝑖𝑛Ω𝑚𝑎𝑥𝜃

𝑃𝑒(Ω|𝜃)

𝑃𝑒
∗𝜃





A multiplicative Universal Decoder

• What if the optimal exponent cannot be attained over all channel class?

• Suppose the universal decoder tries to attain a fraction 0 ≤ 𝜉 ≤ 1 of the exponent:

• Note that for 𝜉 = 0 we get the GLRT and for 𝜉 = 1 the competitive miin-max criterion.

• A plausible criterion would be to look for 𝜉∗ the highest fraction of the exponent that can be 
attained uniformly over the class:

𝜉∗ = 𝑠𝑢𝑝 𝜉: lim sup
𝑛→∞

1

𝑛
log 𝐾𝑛

𝜉
≤ 0

• Incidentally, this is equivalent to a “multiplicative” criterion over the exponents

𝑚𝑖𝑛Ω𝑚𝑎𝑥𝜃

𝑃𝑒(Ω|𝜃)

[𝑃𝑒
∗ 𝜃 ]𝜉

≜ 𝐾𝑛
𝜉



Example

• The channel:

𝑦𝑡 = 𝜃𝑥𝑡 + 𝑤𝑡

where 𝜃 is an unknown fading parameter, 𝑤𝑡 is Gaussian white noise

• Two codewords: 

Orthogonal, unequal power



The GLRT and the Universal Decoder



Attaining optimal Random Coding Exponent

• In random coding, define the error probability for a given observed word 𝑦 and a transmitted codeword 𝑥0: 

• An error occurs if a randomly selected word 𝑥 attains a better score (given 𝑦 ) than that of the codeword 𝑥0.

• When the channel law 𝑃(𝑦|𝑥) is given:

𝑃𝑟 𝑒𝑟𝑟𝑜𝑟|𝑦, 𝑥0 = 𝑄





Attaining optimal Random Coding Exponent

• Extensions: (Elkayam-F 2015)

• Deal with general channels priors 𝑄

• Can accommodate general metrics and mis-match decoding

• Randomize for equalities in the list to attain optimal 
solution



Universal Channel Coding



Optimal Channel Coding

• The channel law is given 𝑃(𝑦|𝑥) .  The channel capacity is known. 

• The codebook design, with the right rate and codeword selection: 

𝑥 ∈ 𝐶 = 𝑥



Feedback!

By using the posterior matching scheme with randomization, for binary modulo 
additive channel with arbitrary noise sequence:

Following that, Lomnitz and Feder, Misra and Weissman attained: 

𝜌



Feedback!



Feedback!

Actually, the following, general result can be obtained (Lomnitz Ph.D, 2013):

There is an unknown arbitrary vector channel 𝑃(𝑦𝑛|𝑥𝑛)

The reference class is the best “block” scheme that knows the channel, denoted 
Iterative Finite Block (IFB)



Feedback!



With no restriction on the memory:

Clearly 𝐶𝐴𝐹𝐵 ≤ 𝐶𝐼𝐹𝐵

Sometime by a lot 





Summary –Universal Communication with 
Feedback and Common Randomness

Unfortunately, convergence to 
𝑪𝑰𝑭𝑩 is very slow:



Rateless Codes

Basic scheme:

• Transmit a fixed amount of 𝐾 bits, 𝑀 = 2𝐾 messages (codewords)

• Suppose a prior 𝑄 𝑥

• Each message is associated with as long as desired stream of symbols 

𝑥1, … , 𝑥𝑡 , …

drawn according to 𝑄 𝑥 . For binary input channels with uniform prior, each 
transmitted symbol is a random linear combination of the input bits 

• The received sequence is 𝑦1, … , 𝑦𝑡 , …

• As the receiver gets “enough” observations, 𝑛, to decode a message it signals the 
transmitter to stop



Rateless Codes

Results 



Rateless Codes

Results (continue..)

• Unknown channel - use a universal decoder with an erasure option. For  
memoryless channels, use:

where 𝐼𝑛(𝒙; 𝒚) is the empirical mutual information. Denote 𝑅𝑛 = Τ𝐾
𝑛 and choose

Attain: = 
1

𝐼

�Â𝐼𝐼

�Â



Further Extensions

• Rateless codes can be used to transmit an unknown number of symbols 𝐾𝑚 !
• This is attained by effectively generating a rateless code for any length,  

• Similarly, a joint source channel coding rateless scheme can be constructed, by a 
mapping 𝑔 that maps each source block 

𝑔: 𝑆𝐾 → 𝑛>logڂ 𝐾



Further Extensions – Unknown side 
information

• A source block is sent, mapped to large as desired channel symbols and decoded with side 
information:

• Unknown statistics of the source and its entropy





Joint source channel coding and universality

• The encoder generates channel input that is a function of the source sequence and “fits” the channel prior

• “Universality” at the decoder: learns the channel and source characteristic for source “de-noising” 

• Sometimes un-coded transmission is optimal –
• Goblick’s classical scheme for Gaussian source over AWGN with square error loss
• Gastpar et al (2003) – “To code or not to code”: additional cases, depending on the source/channel/distortion measure 
• Kochman and Zamir (2011) – “Analog matching …”





Wireless Video Communication

However, wireless video communication is more challenging. 

In wireless channels, the capacity 𝐶 changes rapidly, while compressed 

video is very sensitive to errors

Separation principle leads to poor quality, latency, unrobust solution 

MUST USE JSCC!

May apply Separation Theorem

Video 

encoder

Pixels 

in data 

modem RF 

signal

bits data 

modem
Video 

decoderRF 

signal + 

noise

Pixels 

outR

F
R

F

bits“Standard” wireless 
video communication



Hybrid Analog-Digital Modem

“Video Modem”

White Gaussian Source?



Wireless Movie Camera:

Amimon Inside – the  product 
that won the Academy Award



The Technology Behind The Academy Award:

Ultra High Definition Wireless Video Transmission on a chip

Amimon’s Chip-set

Award recipients: Guy Dorman, Zvi Reznic, Meir Feder and Ron Yogev





Video transmission with varying wireless capacity

Time

Channel Capacity 

& Used capacity

Actual channel capacity
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Completely secured audio and control data



Video transmission with varying wireless capacity

Time



utilized capacity in
AMIMON’s system

Video transmission with varying wireless capacity

Time
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Original Data before scrambling: (𝐹𝑖𝑛𝑝𝑢𝑡)

In addition, (small) Hadamard transform over the transmitted antennas to smooth power



Co-existence with other systems (Amimon/WiFi) on the production set
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Coexistence with other stations (Wi-Fi/Amimon)

● At power up the system scans the environment, maps the channels & keeps a table of 

interference level.

● System hop to a clean channel and start operating (preference to DFS)

● Transmission pause periodically, to allow other stations (e.g.  Wi-Fi) to transmit 

● The system continues monitoring the current and alternative channels 

●
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Robustness Tools

● The “robustness” tools can be divided into three categories:  

● PHY robustness, which results in low PER of the sensitive parts of the data

● MAC robustness, ensuring robust link management during interference 

● Robustness of the video decoder and the system, which results in high quality 

video, even during events in which the modem cannot decode the transmitted 

data from the received signal





The Best Wireless High-Definition Video Transmission on a Chip

• Amimon was founded in 2004 to provide a “wireless HDMI” solution on a chip

• TV manufacturers’ requirements at the time: Highest HD quality, Robust transmission, No latency, Low power/low cost

Amimon’s chipset provides such a solution (for 1080p and above) since 2009!

Standard video compression + modem does not do the job!

•



THANKS!


