

President Joachim Hagenauer

المحمد المحم المحمد ا المحمد $= \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1$

 $(x_{1}, y_{2}, y_{2},$

$$= \underbrace{ \left[\begin{array}{c} \prime (\end{array} \right) \right]}_{\rightarrow \infty}.$$

	~	~ 3	,	· · · ·	· ,		2 - F	,	. '.
· · /-	· · ,		,	/ 4	· .		· • , · ·	• •	<pre>/ ``</pre>
e .	`		- L -	2	/ . . -		· · . •		• ,
··· ·	. - ،	 	• 	.,	/	·• · ·	2.2	78	, 1 -
· . ·	-	2(2	7),		•, '	~		0.	585
, , , ,		.4 .		· · ·	· · •	、41.5 (%. , .	. 1 - 2 2	,, - ,
<u>2</u> -		ne sign Sin gr				-			
3-,		/		. 4 .		• • • •	- 4		

and the second second

I and the second se

and the state of the second states and the s , 1,1, 1,2, 1,3, 1,4, 1,5, 1,6... , 2,1 , 2,2 , 2,3 , 2,4 , 2,5 , 2,6 . . . , 3,1 , 3,2 , 3,3 , 3,4 , 3,5 , 3,6 . . . $\boldsymbol{\lambda}_{0} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \boldsymbol{\lambda}_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$ and the second and the first and the second sec a second a s proverse and a second and the second and the second secon

$$\begin{array}{c} \mathbf{A} \\ \mathbf{$$

 \sim , \sim

$$\begin{array}{c} \mathbf{A} \\ \mathbf{$$

Α.,

14 N. 1.

9

الای باری به در به در این این این این 346 · · · · · · 4 .4 560 . • / - -• . 4 / Α, · · · 4 , , , 4 , 4 - -4 (. .,.. -----.).

A 1-, / · and the start of ` ' ' ... ---1. 1 (. . . . - -)____ 1-, ۰, • / , is a second to the second s

 $\mathbf{A} \bullet \mathbf{A} \bullet$

 $\begin{array}{c} \sum_{i=1}^{n} \left\langle \left\langle x_{i}^{i} \right\rangle + \left\langle x_{i}^{i} \right\rangle + \left\langle \left\langle x_{i}^{i} \right\rangle + \left\langle x$

× r * 1 7 * r . 1*

 $(\mathbf{A}_{\mathbf{A}}) = \mathbf{A}_{\mathbf{A}} + \mathbf{A}_{\mathbf{A}} + \mathbf{A}_{\mathbf{A}}$ 1 1 / ---, , A second to a second prover second second and the second second . . . and and the second an • • • • • • • • • • • • • • • • • • • and the contract of the contra and the state of the second state of the - . -70, 80, 80, .

and the second production of the second and the second •, •,,• •,,•• •,, 1. . . /. N ., 1977 and the set (and a set of a se \ . . . \ . . **.** . . ··· · · · · e contra presente contra · · · · · ·).

A. Ephremides

n and the second s		
and the second		
and the spectrum of the second s		
and the second		
.,	-4361461751.73(615)127(7 408)(616, (7(72	5.B(6 151,7(6. 3 1 2 4

Paddy Farrell

د، ر ـ ، ر ▲	• *• *• • * *	4		· · • • ·	
	• • • • • • •	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	4 	• • •	15
· · · ·	20, ,200)1.	4	• ,	1.4.
• • /	• • • • • •		4 - 14 - 14	۱ ۰ ,	, -
· · · · · · ·	··· · / /- / ····		· / ·• · · · · · · · · · · · · · · · · ·	· ·• ·	
• • • • • • • • • • • • • • • • • • •	· · · · · ·	A	, -	· • • ·	· • •
	· · · · · · · · · · · · · · · · · · ·				

• rr 1°r

K N TH K T

· 17 ** 1* 7 1- ** 7 . 1* * 1**

() = ()

- 1. () () = $10^{-1} = 10^$
- 2. () = /(), ≤ 100 , ≤ 100 , () = $= 62,63,65,75,84,\ldots,95$.

2001	2-7, 2001 IEEE I fla a tha Theha Wha shha	, A	2522, A ' @ : +61 2 4221 3407 : +61 2 4221 3236	31, 2001
 3-	5,2001 Mi y-Wh ^{\$} hh h Ch h ih a Chde ^{\$}	y (29 45326 : +49 201 183 7663 	Α 7, 2001
. 30-	2002.IEEE.I.e.atha.S.,h. ^s t In Ifin ath Thein		1 ,	. 5, 2002

, 1°, °, °,		A	. A . / A	A
19-22, 2002	2002 IEEE Change 1 ca tha s The haw sha	&	A 571 250 14, A 30318 +1 404 894 2923 +1 404 894 7883 ()	A
2002 18-22,	GLOBECOM 2002 - 2002 IEEE G laba Te echa 1ca 1 la Cha fe e ce	5	12, 551 , 326 A A +886 3 424 5210 +886 3 424 4168 () @,	

