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Error-correcting codes

“Message” m (k symbols) maps to “codeword” C(m) (n > k symbols).

Set of codewords is a code C.

Key parameters:

Rate 1
n log jCj : efficiency

Distance : error-correction potential
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Distance and errors

Distance: “How many errors do we need to turn x into y?”

Can correct as many errors as half the distance:

Vincent Tan (NUS) Max Size of Codes s.t. Distance Criterion ITCom Workshop 3 / 31



Distance and errors

Distance: “How many errors do we need to turn x into y?”

Can correct as many errors as half the distance:



Distance and errors

Distance: “How many errors do we need to turn x into y?”

Can correct as many errors as half the distance:

Vincent Tan (NUS) Max Size of Codes s.t. Distance Criterion ITCom Workshop 3 / 31







nnX i=11fxi6=yig(Hamming distance

MaxSizeofCodess.t.DistanceCriterionITComWorkshop4/31





Distance

Different “distances” for different applications.

�(x; y) =
1
n

nX
i=1

1fxi 6= yig (Hamming distance)

�(x; y) =

(
0 x = y
1 else

(Probability-of-error distortion)

�(x; y) = pretty much anything!
(deletion distance, rank-metric, etc)
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Coding and the distance problem

Question: What is the optimal rate–distance trade-off?
In other words, for fixed d, what is the largest size of a distance d code?
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The GV bound and good codes

Theorem (Gilbert-Varshamov bound)

9 codes in f0; 1gn with Hamming distance d = �n and rate � 1� H(�).

Proof 1: Greedy. Pick codewords at distance d until you can’t.

Each circle has � 2H(�)n vectors, so final code size is 2n=2H(�)n.
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GV continued

Proof 2: Random [Barg and Forney (2002)].

Pick i.i.d. codewords uniformly from f0; 1gn.

Works for rate R � 1� H(�) (proof on next slide).
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GV continued

Proof 2: Random. Let R = 1� H(�)� �.

Look at collision probability Pr[�(X;Y) < �n] = 2H(�)n=2n.

Number of “bad” pairs (x; y) is

� 22Rn � 2H(�)n

2n = 2(R��)n:

Remove one element from each bad pair.

Distance is now �, and rate is still � R.
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Extending GV

Tightness of the GV bound is a major open question!

This work: What if we don’t use the uniform distribution in the random
proof?

(Could imagine: supported on structured set, mixing distributions.)

To mimic the GV proof, need to understand collision probability.

When are two random codewords at distance < d?
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In other words. . .

Moral: For various X, want to understand collision probability (distance
spectrum):

FX(d) := Pr
�
�(X; X̂) < d

�
;

where X̂ is an independent copy of X.

Example. X uniform over a code C of distance d.

FX(d) = Pr[X = X̂]

=
X
x2C

�
PX(x)

�2

=
1
jCj
:
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Exact distance spectrum formula

So, if X is uniform over C, then

jCj = 1
FX(d)

:

In fact, this is tight.

Theorem (Main theorem)

Let M�(d) be the optimal size of a distance d code. Then

M�(d) = sup
X

1
FX(d)

= sup
X

1

Pr
�
�(X; X̂)



Exact distance spectrum formula

So, if X is uniform over C, then

jCj = 1
FX(d)

:

In fact, this is tight.

Theorem (Main theorem)

Let M�(d) be the optimal size of a distance d code. Then

M�(d) = sup
X

1
FX(d)

= sup
X

1

Pr
�
�(X; X̂) < d

� :
Key points:

No asymptotics!
Exact formula for basically any distance measure.

Holds for arbitrary (non-discrete) alphabets.
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Remarks on the result

Theorem

Let M�(d) be the optimal size of a distance d code. Then

M�(d) = sup
X

1
FX(d)

= sup
X

1

Pr
�
�(X; X̂) < d

� :

Turns question about codes into one about distributions.

Allows us to use optimization techniques for distributions.

New bounds on the second-order asymptotics.

Best distribution is uniform over optimal code, but any distribution
gives a lower bound.
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Proof for Discrete Case

For a fixed random vector X, want to show:

FX(d) = Pr[�(X; X̂) < d] � 1
M�(d)

:

Two steps:
1 If jsupp(X)j = M � M�(d), then

FX(d) � 1
M�(d)

:

2 If M > M�(d), can reduce to first case.
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Step 1: small support

We have
Pr
�
�(X; X̂) < d

�
�

X
x2supp(X)

PX(x)2:

Assume jsupp(X)j = M � M�(d). Then

1
M

X
x2supp(X)

PX(x) =
1
M
:

By Cauchy-Schwartz,X
x2supp(X)

PX(x)2 �
X

x2supp(X)

1
M2 =

1
M
� 1

M�(d)
:

So, for small support, uniform is best.
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We have
Pr
�
�(X; X̂) < d

�
�

X
x2supp(X)

PX(x)2:

Assume jsupp(X)j = M � M�(d). Then

1
M

X
x2supp(X)

PX(x) =
1
M
:

e(:)]TJ4S 0 0 1 -10.909 -114.926 cm
BT
3/TJ/F38 cm 
1 01
1 0 0926 c2Kh6
1  01
1 0 0926 c49091 Tf 7.273 0 Td [(<)]TJ/F71 10.5/TJ/F38 cm 
1 01
1 0 0926 c2Kh6
S61b 3[(�]TJ2157969091 Tf 5.749 0 Td [())9810.4 71 076()]TJ/F77 7.9701 Tf 3.2941249 7 1 166.51 173.219 cm
1 0 0 1 9810.4 64.866J/F71 10.90914S 0 0 1 -10.j
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Step 2: large support

Showed that if jsupp(X)j is small, FX(d) � 1
M�(d) .

Idea: If jsupp(X)j is large, show how to reduce jsupp(X)j without
increasing FX(d).

Specifically, we’ll find X0 with support size

jsupp(X)j � 1

and
FX0(d) � FX(d):

If we iterate this until the support has size M�(d), then

FX(d) � FX0(d) � FX00(d) � � � � � 1
M�(d)

:
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Large support cont.

Support reduction. Starting with distribution X on large support
M > M�XM
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Large support cont.

Support reduction. Starting with distribution X on large support
M > M�(d), want to construct X0 on smaller support.

Intuition Pr[�(X; X̂)<d]=
P

i;j pipj1f�(xi; xj)<dg where pi = PX(xi)

p1

p2 Pr[µ(x, x̂) < d] = p2
1 + p2

2 + 2p1p2
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Large support cont.

Support reduction. Starting with distribution X on large support
M > M�(d), want to construct X0 on smaller support.

Proof.
If jsupp(X)j > M�(d), have x; y 2 supp(X) at distance < d. Want to
“combine” x; y.

Question: Which of x; y to keep?

Answer: “Furthest”: Keep x if

Pr
�
�(x;X) < d

�
� Pr

�
�(y;X) < d

�
:

Keeps distance spectrum (collision probability) FX(d) small.
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Summary of Proof for Discrete Case

For X with small support,

FX(d) � 1
M�(d)

:

For other X, can reduce support size.

Thus, optimal code size for distance d is

M�(d) = sup
X

1
FX(d)

= sup
X

1

Pr
�
�(X; X̂) < d

� :
(Upper bound via uniform distribution.)
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An Algorithmic Construction

“Support reduction” proof is (sort of) constructive.

Start with any distribution, look at two codewords at distance < d,
remove the one which is “closer” to the code.

Can be thought of as a different way to implement GV greedy
construction. Seems to work well in simulations.
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An Algorithmic Construction (n = 13)
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Generalization to Non-Discrete Alphabets

Previous achievability proof only works for discrete (finite)
alphabets because we used supp(X).

Sort of similar to Motzkin-Strass (1965) and Korn (1968)

1 T. S. Motzkin and E. G. Straus, “Maxima for graphs and a new proof
of a theorem of Turan,” Canad. J. Math, vol. 17, no. 4, pp. 533–540,
1965.

2 I. Korn, “On the lower bound of zero-error capacity,” IEEE Trans. Inf.
Theory, vol. 40, no. 4, pp. 509–510, May 1968.

We now generalize to the case in which jX j =1 (even
uncountable)

Idea: Greedy selection of codewords fuigki=1 given a fixed random
vector/distribution X � PX.
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Non-Discrete Code Alphabets: Illustration
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Pr
�
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Non-Discrete Code Alphabets: Illustration

ui = arg minui
Pr
�
X 2 Bd(ui) n [i�1

j=1Bd(uj)
�
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Non-Discrete Code Alphabets: Illustration

Until you run out of space!
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Non-Discrete Code Alphabets: Achievability Proof

The code C = fui : i = 1; : : : ;Mg formed is a distance-d code and

pj := Pr
�
X 2 Bd(ui) n [i�1

j=1Bn [u



Non-Discrete Code Alphabets: Achievability Proof

The code C = fui : i = 1; : : : ;Mg formed is a distance-d code and

pj := Pr
�
X 2 Bd(ui) n [i�1

j=1Bd(uj)
�
; satisfies

MX
j=1

pj = 1:

Let Di := Bd(ui) n [i�1
j=1Bd(uj) and note that fDig forms a partition of X n.

Pr[�(X; X̂) < d] =

MX
j=1

Z
x2Dj

 Z
x̂2Bd(x)

dPX(x̂)

!
dPX(x) * X ?? X̂

�
MX

j=1

Z
x2Dj

pj dPX(x) * min
x2Dj

PXfBd(x)g � pj

�
MX

j=1

p2
j �

1
M
� 1

M�(d)
* Cauchy-Schwarz & M � M�(d)
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Summary of Proof for Non-Discrete Alphabets

Also used a greedy construction (à la Feinstein’s lemma in
information spectrum analysis)

But we removed space Bd(uk) � X n successively instead of
codewords successively.

Showed through simple algebraic manipulations that for any X,

FX(d) = Pr
�
�(X; X̂) < d

�
� 1

�

codew) = Pr

�8(=)-278(P)1202 454912265 -138 10=Td [(�)]TJ/F72 1091 T7.273 0 Td [(<)]TJ/F15 10.9091 Tf 28.]TJ/F38 10..7 Tf 4.242 s]0 d 0 J 030.9004876 0 Td d [(code)20(w)10 RG
 -1093 -.9004876 0 Td[(d)]TJ/F15 10.9091 Tf 5.749 0 Td [())-278(=)-278(P)1(r)]TJ/F38 10.9091
1 X1)

�X (d) = Pr



Alsousedagreedyconstruction(àlaFeinstein'slemmain

B d(u

k) � Xn

Showedthroughsimplealgebraicmanipulationsthatforany X,

F

X( d ) = Pr��(X;

^

X)<d��
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Showed through simple algebraic manipulations that for any X,

FX(d) = Pr
�
�(X; X̂) < d

�
� 1

M�(d)
=) M�(d) � sup

X

1
FX(d)

:

Converse part is the same as for discrete alphabets (hinges on
uniform distribution over optimal code C�)

In summary,

M�(d) = sup
X

1
FX(d)

Vincent Tan (NUS) Max Size of Codes s.t. Distance Criterion ITCom Workshop 24 / 31



Summary of Proof for Non-Discrete Alphabets

Also used a greedy construction (à la Feinstein’s lemma in
information spectrum analysis)

But we removed space Bd(uk) � X n successively instead of
codewords successively.

Showed through simple algebraic manipulations that for any X,

FX(d) = Pr
�
�(X; X̂) < d

�
� 1

M�(d)
=) M�(d) � sup

X

1
FX(d)

:

Converse part is the same as for discrete alphabets (hinges on
uniform distribution over optimal code C�)

In summary,

M�(d) = sup
X

1
FX(d)

Vincent Tan (NUS) Max Size of Codes s.t. Distance Criterion ITCom Workshop 24 / 31



Summary of Proof for Non-Discrete Alphabets

Also used a greedy construction (à la Feinstein’s lemma in
information spectrum analysis)

But we removed space Bd(uk) � X n successively instead of
codewords successively.

Showed through simple algebraic manipulations that for any X,

FX(d) = Pr
�
�(X; X̂) < d

�
� 1

M�(d)
=) M�(d) � sup

X

1
FX(d)

:

Converse part is the same as for discrete alphabets (hinges on
uniform distribution over optimal code C�)

In summary,

M�(d) = sup
X

1
FX(d)

Vincent Tan (NUS) Max Size of Codes s.t. Distance Criterion ITCom Workshop 24 / 31





Re 1.nedAsymptoticsI

Corollary(Re 1.nedGVbound)

FortheHammingdistance,theoptimalcoderatefordistance� nisR

�

n

(� )�

1 � H(� )+

log n

2 n

+ 1.�1

n�

:

Proof.













Refined Asymptotics II

Corollary (Upper Bound on Rate)

For any arbitrary bounded distance measure, the optimal code rate for
distance �n is

R�n(�) � IXn(�) + O
�

1p
n

�
:

where the large-deviations rate function is

IXn(a) := sup
�
fa� � ’Xn(�)g ; and ’X(�) := log E

h
e��(X;X̂)

i
:

Proof.

Careful tilting of probability distributions.
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First-Order Asymptotics

Corollary (First-Order Asymptotics on Rate)

If the sequence of distance measures satisfies

sup
n2N

max
xn;x̂n

1
n
�(xn; x̂n) <1;

then we have

lim sup
n!1

R�n(�) = lim sup
n!1

IXn(�); and

lim inf
n!1

R�n(�) = lim inf
n!1

IXn(�)

where the large-deviations rate function is

IXn(a) := sup
�
fa� � ’Xn(�)g ; and ’X(�) := log E

h
e��(X;X̂)

i
:
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New derivation of Hamming bound

Corollary (Hamming Bound for Finite jX j)

M�(d) � inf
�>0

jX jn��B(d��)=2(0)
�� � jX jn��Bb(d�1)=2c(0)

��

Proof: (Due to V. Guruswami).

Let e = (d � �)=2. Then

jBe(0)jFX(d) =
X

x

X
y2Be(x)

PX(y)
X

z:�(x;z)<d

PX(z)

�
X

x

X
y2Be(x)

X
z2Be(x)

PX(y)PX(z)

CS
�

 X
x

X
y2Be(x)

PX(y)

!2

=
jBe(0)j2

jX jn
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Related Work

My visit to NCTU in 2015

Chen, Lee and Han (2000) proved an elegant information
spectrum-style result

lim sup
n!1

��n(2nR) = sup
X=fXng1n=1

�X(R





Related Work

My visit to NCTU in 2015

Chen, Lee and Han (2000) proved an elegant information
spectrum-style result

lim sup
n!1

��n(2nR) = sup
X=fXng1n=1

�X(R) (except at countably many points)

�X(R) := inf
n

a 2 R : lim
n!1

Pr
�
�(Xn; X̂n) > a

�2nR

= 0
o
:

The present result is a non-asymptotic version of CLH2000.
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Related Work







Conclusion

Showed how to connect optimal code size/distance tradeoff and
distance spectrum

FX(d) = Pr
�
�(X; X̂) < d

�
for different random vectors X.
Also got an algorithm for constructing codes.

Some open questions.

Better algorithm (improved rule for combining codewords)?
Better bounds for the current algorithm?
Improved codes?
To appear in the IEEE Transactions on Information Theory in
2019.
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My collaborators and I at ITW 2017 (Kaohsiung)
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Vincent Tan (NUS)

Max Size of Codes s.t. Distance Criterion
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