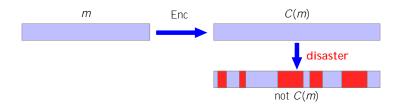
On the Maximum Size of Block Codes Subject to a Distance Criterion

Vincent Y. F. Tan
National University of Singapore (NUS)



m

m

"Message" m (k symbols) maps to "codeword" C(m) (n > k symbols).

Set of codewords is a code C.

m

"Message" m (k symbols) maps to "codeword" C(m) (n > k symbols).

Set of codewords is a code C.

Distance and errors

Distance and errors

Distance: "How many errors do we need to turn **x** into **y**?"

Distance and errors

Distance: "How many errors do we need to turn **x** into **y**?"

Can correct as many errors as half the distance:

Different "distances" for different applications.

$$(\mathbf{x},\mathbf{y}) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} f x_i \in y_i g$$

(Hamming distance)

Different "distances" for different applications.

$$(\mathbf{x}_i \mathbf{y}) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} f x_i \notin y_i g$$
 (Hamming distance)
$$(\mathbf{x}_i \mathbf{y}) = \begin{cases} 0 & \mathbf{x} = \mathbf{y} \\ 1 & \text{else} \end{cases}$$
 (Probability-of-error distortion)

Different "distances" for different applications.

$$(\mathbf{x}; \mathbf{y}) = \frac{1}{n} \sum_{i=1}^{N} \mathbf{1} f x_i \notin y_i g$$
 (Hamming distance)
$$(\mathbf{x}; \mathbf{y}) = \begin{cases} 0 & \mathbf{x} = \mathbf{y} \\ 1 & \text{else} \end{cases}$$
 (Probability-of-error distortion)
$$(\mathbf{x}; \mathbf{y}) = \text{pretty much anything!}$$

Different "distances" for different applications.

$$(\mathbf{x}; \mathbf{y}) = \frac{1}{n} \sum_{i=1}^{N} \mathbf{1} f x_i \notin y_i g$$
 (Hamming distance)
$$(\mathbf{x}; \mathbf{y}) = \begin{cases} 0 & \mathbf{x} = \mathbf{y} \\ 1 & \text{else} \end{cases}$$
 (Probability-of-error distortion)
$$(\mathbf{x}; \mathbf{y}) = \text{pretty much anything!}$$

(deletion distance, rank-metric, etc)

Coding and the distance problem

Theorem (Gilbert-Varshamov bound)

9 codes in f0; $1g^n$ with Hamming distance d = n and rate 1 H().

Theorem (Gilbert-Varshamov bound)

9 codes in $f0;1g^n$ with Hamming distance d=n and rate 1 H().

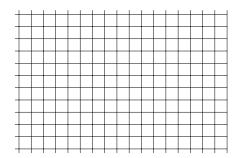
Proof 1: Greedy.

Theorem (Gilbert-Varshamov bound)

9 codes in $f0;1g^n$ with Hamming distance d=n and rate 1 H().

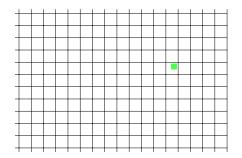
Theorem (Gilbert-Varshamov bound)

9 codes in $f0;1g^n$ with Hamming distance d=n and rate 1 H().



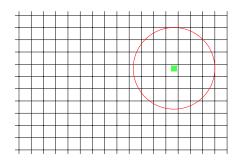
Theorem (Gilbert-Varshamov bound)

9 codes in $f0;1g^n$ with Hamming distance d=n and rate 1 H().



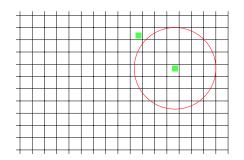
Theorem (Gilbert-Varshamov bound)

9 codes in $f0:1g^n$ with Hamming distance d = n and rate 1 H().



Theorem (Gilbert-Varshamov bound)

9 codes in $f0;1g^n$ with Hamming distance d=n and rate 1 H().

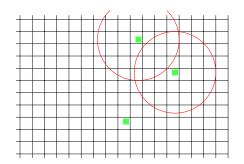


Theorem (Gilbert-Varshamov bound)

9 codes in $f0;1g^n$ with Hamming distance d=n and rate 1 H().

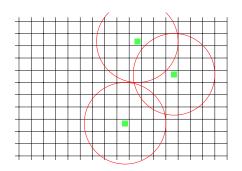
Theorem (Gilbert-Varshamov bound)

9 codes in $f0;1g^n$ with Hamming distance d=n and rate 1 H().



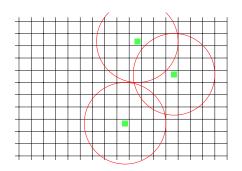
Theorem (Gilbert-Varshamov bound)

9 codes in $f0;1g^n$ with Hamming distance d=n and rate 1 H().



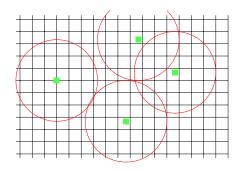
Theorem (Gilbert-Varshamov bound)

9 codes in $f0;1g^n$ with Hamming distance d=n and rate 1 H().



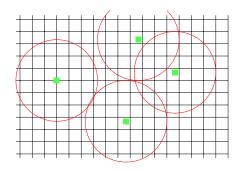
Theorem (Gilbert-Varshamov bound)

9 codes in $f0;1g^n$ with Hamming distance d=n and rate 1 H().



Theorem (Gilbert-Varshamov bound)

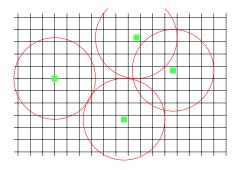
9 codes in $f0;1g^n$ with Hamming distance d=n and rate 1 H().



Theorem (Gilbert-Varshamov bound)

9 codes in $f0;1g^n$ with Hamming distance d=n and rate 1 H().

Proof 1: Greedy. Pick codewords at distance *d* until you can't.



Each circle has

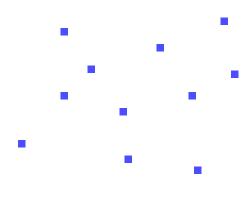
 $2^{H()n}$ vectors, so final code size is $2^n = 2^{H()n}$.

Proof 2: Random [Barg and Forney (2002)].

Pick i.i.d. codewords uniformly from $f0:1g^n$.

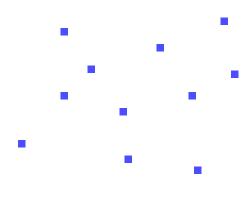
Proof 2: Random [Barg and Forney (2002)].

Pick i.i.d. codewords uniformly from $f0:1g^n$.



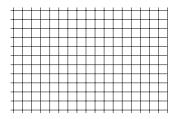
Proof 2: Random [Barg and Forney (2002)].

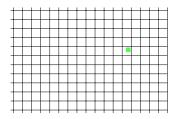
Pick i.i.d. codewords uniformly from $f0:1g^n$.

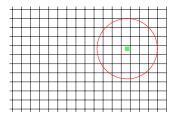


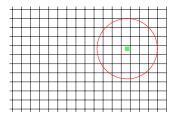
Proof 2: Random [Barg and Forney (2002)].

Proof 2: Random.

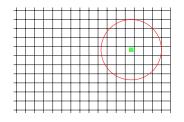








Proof 2: Random. Let R = 1 H()



Look at collision probability $Pr[(\mathbf{X}; \mathbf{Y}) < n] = 2^{H()n} = 2^n$.

Proof 2: Random. Let R = 1 H() .



Look at collision probability $Pr[(\mathbf{X}, \mathbf{Y}) < n] = 2^{H(\cdot)n} = 2^n$.

Number of "bad" pairs (x;y) is

$$2^{2Rn} \frac{2^{H()n}}{2^n} = 2^{(R)n}$$
:

Remove one element from each bad pair.

Distance is now, and rate is still R.

Tightness of the GV bound is a major open question!

This work: What if we don't use the uniform distribution in the random

Tightness of the GV bound is a major open question!

This work: What if we don't use the uniform distribution 2000 25 729 2000

Tightness of the GV bound is a major open question!

This work: What if we don't use the *uniform* distribution in the random proof?

(Could imagine: supported on structured set, mixing distributions.)

To mimic the GV proof, need to understand collision probability.

When are two random codewords at distance < d?

Moral: For various **X**, want to understand collision probability (distance spectrum):

$$F_{\mathbf{X}}(d) := \operatorname{Pr} (\mathbf{X} : \hat{\mathbf{X}}) < d$$

where $\hat{\mathbf{X}}$ is an independent copy of \mathbf{X} .

Moral: For various **X**, want to understand collision probability (distance spectrum):

$$F_{\mathbf{X}}(d) := \Pr (\mathbf{X} : \hat{\mathbf{X}}) < d$$

where $\hat{\mathbf{X}}$ is an independent copy of \mathbf{X} .

Example. X uniform over a code C of distance d.

Moral: For various **X**, want to understand collision probability (distance spectrum):

$$F_{\mathbf{X}}(d) := \Pr(\mathbf{X}; \hat{\mathbf{X}}) < d;$$

where 10.9091 Tf -229.728distance

Moral: For various **X**, want to understand collision probability (distance spectrum):

 $F_{X}($

Exact distance spectrum formula

Exact distance spectrum formula

So, if X is uniform over

Exact distance spectrum formula

So, if **X** is uniform over C, then

$$jCj = \frac{1}{F_{\mathbf{X}}(d)}$$
:

In fact, this is tight.

Theorem (Main theorem)

Let M (d) be the optimal size of a distance d code. Then

$$M(d) = \sup_{\mathbf{X}} \frac{1}{F_{\mathbf{X}}(d)} = \sup_{\mathbf{X}} \frac{1}{\Pr(\mathbf{X}/\hat{\mathbf{X}})}$$

Exact distance spectrum formula

So, if **X** is uniform over C, then

$$jCj = \frac{1}{F_{\mathbf{X}}(d)}:$$

In fact, this is tight.

Theorem (Main theorem)

Let M (d) be the optimal size of a distance d code. Then

$$M(d) = \sup_{\mathbf{X}} \frac{1}{F_{\mathbf{X}}(d)} = \sup_{\mathbf{X}} \frac{1}{\Pr(\mathbf{X}; \hat{\mathbf{X}}) < d}$$
:

Key points:

- No asymptotics!
- Exact formula for basically any distance measure.

Theorem

Let M (d) be the optimal size of a distance d code. Then

$$M(d) = \sup_{\mathbf{X}} \frac{1}{F_{\mathbf{X}}(d)} = \sup_{\mathbf{X}} \frac{1}{\Pr(\mathbf{X}; \hat{\mathbf{X}}) < d}$$
:

Theorem

Let M (d) be the optimal size of a distance d code. Then

$$M(d) = \sup_{\mathbf{X}} \frac{1}{F_{\mathbf{X}}(d)} = \sup_{\mathbf{X}} \frac{1}{\Pr(\mathbf{X}; \hat{\mathbf{X}}) < d}$$
:

- Turns question about codes into one about distributions.
- Allows us to use optimization techniques for distributions.

Theorem

Let M (d) be the optimal size of a distance d code of the 10.9091 Tf 4.24

Theorem

Let M (d) be the optimal size of a distance d code. Then

$$M(d) = \sup_{\mathbf{X}} \frac{1}{F_{\mathbf{X}}(d)} = \sup_{\mathbf{X}} \frac{1}{\Pr(\mathbf{X}; \hat{\mathbf{X}}) < d}$$
:

- Turns question about codes into one about distributions.
- Allows us to use optimization techniques for distributions.
- New bounds on the second-order asymptotics.
- Best distribution is uniform over optimal code, but any distribution gives a lower bound.

Proof for Discrete Case

For a fixed random vector **X**, want to show:

$$F_{\mathbf{X}}(d) = \Pr[\ (\mathbf{X}; \hat{\mathbf{X}}) < d] \quad \frac{1}{M(d)}$$
:

Two steps:

1 If jsupp(\mathbf{X})j = M M (d), then

$$F_{\mathbf{X}}(d) = \frac{1}{M(d)}$$
:

41.886ize of Code 5.977t

t

We have

Pr
$$(\mathbf{X}; \hat{\mathbf{X}}) < d$$
 $\underset{\mathbf{x} \ge \text{supp}(\mathbf{X})}{\times} P_{\mathbf{X}} (\mathbf{x})^2$:

We have

Pr
$$(\mathbf{X}; \hat{\mathbf{X}}) < d$$
 $\underset{\mathbf{x} \ge \text{supp}(\mathbf{X})}{\times} P_{\mathbf{X}}(\mathbf{x})^2$:

Assume jsupp(\mathbf{X}) $j = M \quad M \quad (d)$.

We have

Pr
$$(\mathbf{X}; \hat{\mathbf{X}}) < d$$
 $\times P_{\mathbf{X}}(\mathbf{x})^2$:

Assume
$$j \operatorname{supp}(\mathbf{X}) j = M$$
 $M(d)$. Then
$$\frac{1}{M} \sum_{\mathbf{x} \ge \operatorname{supp}(\mathbf{X})} P_{\mathbf{X}}(\mathbf{x}) = \frac{1}{M}$$

We have

Pr
$$(\mathbf{X}; \hat{\mathbf{X}}) < d$$
 $\underset{\mathbf{x} \ge \text{supp}(\mathbf{X})}{\times} P_{\mathbf{X}}(\mathbf{x})^2$:

Assume jsupp(\mathbf{X})j = M M (a). Then

$$\frac{1}{M} \times P_{\mathbf{X}}(\mathbf{x}) = \frac{1}{M}.$$

By Cauchy-Schwartz,

$$\underset{\mathbf{x} \geq \text{supp}(\mathbf{X})}{\times} P_{\mathbf{X}}(\mathbf{x})^{2} \qquad \underset{\mathbf{x} \geq \text{supp}(\mathbf{X})}{\times} \frac{1}{M^{2}} = \frac{1}{M} \qquad \frac{1}{M(d)}:$$

We have

Pr
$$(\mathbf{X}; \hat{\mathbf{X}}) < d$$
 $\times P_{\mathbf{X}}(\mathbf{x})^2$:

Assume jsupp(\mathbf{X})j = M M (a). Then

$$\frac{1}{M} \times P_{\mathbf{X}}(\mathbf{x}) = \frac{1}{M}$$

By Cauchy-Schwartz,

$$\underset{\mathbf{x} \geq \text{supp}(\mathbf{X})}{\times} P_{\mathbf{X}}(\mathbf{x})^{2} \qquad \underset{\mathbf{x} \geq \text{supp}(\mathbf{X})}{\times} \frac{1}{M^{2}} = \frac{1}{M} \qquad \frac{1}{M(d)}:$$

So, for small support, uniform is best.

Showed that if $j \operatorname{supp}(\mathbf{X}) / \operatorname{is small}$, $F_{\mathbf{X}}(d) = \frac{1}{M(d)}$.

Showed that if $j \operatorname{supp}(\mathbf{X}) / \operatorname{is small}$, $F_{\mathbf{X}}(d) = \frac{1}{M(d)}$.

Idea: If jsupp(**X**)j is large, show how to reduce jsupp(**X**)j without increasing $F_{\mathbf{X}}(d)$.

Specifically, we'll find \mathbf{X}^{ℓ} with support size

$$j$$
supp(**X**) j 1

and

$$F_{\mathbf{X}^{\emptyset}}(d)$$
 $F_{\mathbf{X}}(d)$:

Showed that if $j \operatorname{supp}(\mathbf{X}) / \operatorname{is small}$, $F_{\mathbf{X}}(d) = \frac{1}{M(d)}$.

Idea: If jsupp(**X**)j is large, show how to reduce jsupp(**X**)j without increasing $F_{\mathbf{X}}(d)$.

Specifically, we'll find \mathbf{X}^{ℓ} with support size

and

$$F_{\mathbf{X}^{\emptyset}}(d)$$
 $F_{\mathbf{X}}(d)$:

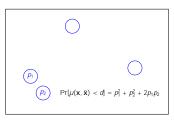
If we iterate this until the support has size M (d), then

$$F_{\mathbf{X}}(d)$$
 $F_{\mathbf{X}^{\emptyset}}(d)$ $F_{\mathbf{X}^{\emptyset}}(d)$ $\frac{1}{M(d)}$

Support reduction. Starting with distribution **X** on large support $M > M^X$

Support reduction. Starting with distribution **X** on large support M > M (d), want to construct **X**^{ℓ} on smaller support.

Intuition Pr[$(\mathbf{X}; \hat{\mathbf{X}}) < d$] = $\bigcap_{i:j} p_i p_j \mathbf{1} f(\mathbf{x}_i; \mathbf{x}_j) < dg \text{ where } p_i = P_{\mathbf{X}}(\mathbf{x}_i)$

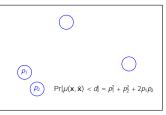


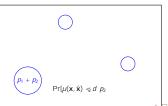
Support reduction. Starting with distribution **X** on large support M > M (d), want to construct **X**^{ℓ} on smaller support.

Intuition Pr[(X; ^

Support reduction. Starting with distribution **X** on large support M > M (d), want to construct **X**^{ℓ} on smaller support.

Intuition Pr[$(\mathbf{X}; \hat{\mathbf{X}}) < d$] = $\bigcap_{i:j} p_i p_j \mathbf{1} f(\mathbf{x}_i; \mathbf{x}_j) < dg \text{ where } p_i = P_{\mathbf{X}}(\mathbf{x}_i)$





Support reduction. Starting with distribution **X** on large support M > M(d), want to construct **X**^{ℓ} on smaller support.

Support reduction. Starting with distribution **X** on large support M > M (d), want to construct **X**^{ℓ} on smaller support.

Proof.

If
$$j \operatorname{supp}(\mathbf{X}) j > M(d)$$
 (X.

Support reduction. Starting with distribution **X** on large support M > M (*d*), want to construct **X**^{ℓ} on smaller support.

Proof

If
$$j \operatorname{supp}(\mathbf{X}) j > M(d) d$$

 \mathbf{X}^{ℓ} on smaller support \mathbf{X}^{ℓ}

Support reduction. Starting with distribution **X** on large support M > M (*d*), want to construct **X**^{ℓ} on smaller support.

Proof.

If $j \operatorname{supp}(\mathbf{X}) j > M$ (d), have $\mathbf{x} : \mathbf{y} \supseteq \operatorname{supp}(\mathbf{X})$ at distance < d. Want to "combine" $\mathbf{x} : \mathbf{y}$.

Question: Which of x; y to keep?

Answer: "Furthest": Keep x if

Pr
$$(\mathbf{x}; \mathbf{X}) < d$$
 Pr $(\mathbf{y}; \mathbf{X}) < d$:

Support reduction. Starting with distribution **X** on large support M > M (d), want to construct **X**^{ℓ} on smaller support.

Proof.

If $j \operatorname{supp}(\mathbf{X}) j > M$ (d)

For **X** with small support,

$$F_{\mathbf{X}}(d) = \frac{1}{M(d)}$$
:

For **X** with small support,

$$F_{\mathbf{X}}(d) = \frac{1}{M(d)}$$
:

For other **X**, can reduce support size.

Thus, optimal code size for distance d is

$$M(d) = \sup_{\mathbf{X}} \frac{1}{F_{\mathbf{X}}(d)} = \sup_{\mathbf{X}} \frac{1}{\Pr(\mathbf{X}; \hat{\mathbf{X}}) < d}$$
:

For **X** with small support,

$$F_{\mathbf{X}}(d) = \frac{1}{M(d)}$$
:

For other **X**, can reduce support size.

Thus, optimal code size for distance d is

$$M(d) = \sup_{\mathbf{X}} \frac{1}{F_{\mathbf{X}}(d)} = \sup_{\mathbf{X}} \frac{1}{\Pr(\mathbf{X}; \hat{\mathbf{X}}) < d}$$
:

(Upper bound via uniform distribution.)

An Algorithmic Construction

An Algorithmic Construction

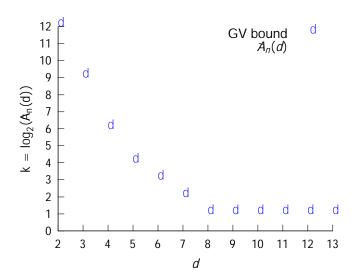
"Support reduction" proof is (sort of) constructive.

An Algorithmic Construction

"Support reduction" proof is (sort of) constructive.

Start with any distribution, look at two codewords at distance < *d*, remove the one which is "closer" to the code.

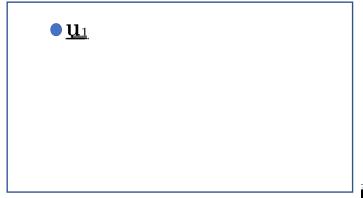
An Algorithmic Construction (n = 13)



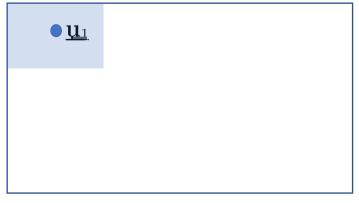
Previous achievability proof only works for discrete (finite) alphabets because we used supp(X).

- Previous achievability proof only works for discrete (finite) alphabets because we used supp(X).
- Sort of similar to Motzkin-Strass (1965) and Korn (1968)
 - 1 T. S. Motzkin and E. G. Straus, "Maxima for graphs and a new proof of a theorem of Turan," Canad. J. Math, vol. 17, no. 4, pp. 533–540, 1965.
 - 2 I. Korn, "On the lower bound of zero-error capacity," IEEE Trans. Inf. Theory, vol. 40, no. 4, pp. 509–510, May 1968.
- We now generalize to the case in which jXj = 1 (even uncountable)

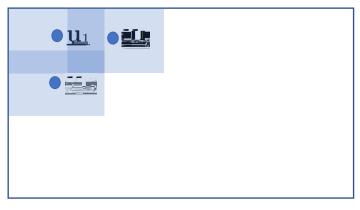
- Previous achievability proof only works for discrete (finite) alphabets because we used supp(X).
- Sort of similar to Motzkin-Strass (1965) and Korn (1968)
 - 1 T. S. Motzkin and E. G. Straus, "Maxima for graphs and a new proof of a theorem of Turan," Canad. J. Math, vol. 17, no. 4, pp. 533–540, 1965.
 - 2 I. Korn, "On the lower bound of zero-error capacity," IEEE Trans. Inf. Theory, vol. 40, no. 4, pp. 509–510, May 1968.
- We now generalize to the case in which jXj = 1 (even uncountable)
- Idea: Greedy selection of codewords $f\mathbf{u}_i g_{i=1}^k$ given a fixed random vector/distribution \mathbf{X} $P_{\mathbf{X}}$.



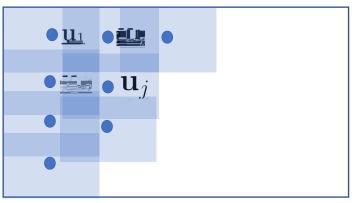
$$\mathbf{u}_1 = \operatorname{arg\,min}_{\mathbf{u}_1} \operatorname{Pr} \mathbf{X} 2 B_d(\mathbf{u}_1)$$



$$\mathbf{u}_1 = \operatorname{arg\,min}_{\mathbf{u}_1} \operatorname{Pr} \mathbf{X} 2 B_d(\mathbf{u}_1)$$



$$\mathbf{u}_i = \operatorname{arg\,min}_{\mathbf{u}_i} \operatorname{Pr} \mathbf{X} 2 B_d(\mathbf{u}_i) n \begin{bmatrix} i & 1 \\ j=1 \end{bmatrix} B_d(\mathbf{u}_j)$$



Until you run out of space!

The code $C = f\mathbf{u}_i : i = 1; \dots; Mg$ formed is a distance-d code and

$$p_j := \operatorname{Pr} \mathbf{X} 2 B_d(\mathbf{u}_i) n \begin{bmatrix} i & 1 \\ j=1 \end{bmatrix} B_d(\mathbf{u}_j)$$
; satisfies $p_j = 1$:

The code $C = f\mathbf{u}_i : i = 1; \dots; Mg$ formed is a distance-d code and

$$p_j := \operatorname{Pr} \mathbf{X} 2 B_d(\mathbf{u}_i) \cap \begin{bmatrix} i & 1 \\ j=1 \end{bmatrix} B_d(\mathbf{u}_j)$$
; satisfies $p_j = 1$:

Let $D_i := B_d(\mathbf{u}_i) \cap \begin{bmatrix} i & 1 \\ j=1 \end{bmatrix} B_d(\mathbf{u}_j)$ and note that fD_ig forms a partition of X^n .

The code $C = f\mathbf{u}_i : i = 1; \dots; Mg$ formed is a distance-d code and

$$p_j := \operatorname{Pr} \mathbf{X} 2 B_d(\mathbf{u}_i) \cap \begin{bmatrix} i & 1 \\ j=1 & B_d(\mathbf{u}_j) \end{bmatrix}$$
; satisfies $p_j = 1$:

Let $D_i := B_d(\mathbf{u}_i) \cap \prod_{j=1}^{i-1} B_d(\mathbf{u}_j)$ and note that fD_ig forms a partition of X^n .

$$\Pr[(\mathbf{X}; \hat{\mathbf{X}}) < d] = \sum_{\substack{j=1 \ \mathbf{X} \ge D_j \ \mathbf{X} \ge B_d(\mathbf{X}) \ \mathbf{X}}} Z \qquad \qquad \downarrow \\ p_j dP_{\mathbf{X}}(\mathbf{X}) \qquad dP_{\mathbf{X}}(\mathbf{X}) \qquad * \mathbf{X} \nearrow \hat{\mathbf{X}} \qquad \qquad \downarrow \\ p_j dP_{\mathbf{X}}(\mathbf{X}) \qquad * \min_{\mathbf{X} \ge D_j} P_{\mathbf{X}} fB_d(\mathbf{X}) g \quad p_j \qquad \qquad \downarrow p_j dP_{\mathbf{X}}(\mathbf{X}) \qquad * \min_{\mathbf{X} \ge D_j} P_{\mathbf{X}} fB_d(\mathbf{X}) g \quad p_j \qquad \qquad \downarrow p_j dP_{\mathbf{X}}(\mathbf{X}) \qquad \qquad \downarrow p_j d$$

Non-Discrete Code Alphabets: Achievability Proof

The code $C = f\mathbf{u}_i : i = 1; \dots; Mg$ formed is a distance-d code and

$$p_j := \operatorname{Pr} \mathbf{X} 2 B_d(\mathbf{u}_i) \cap \begin{bmatrix} i & 1 \\ j=1 & B_d(\mathbf{u}_j) \end{bmatrix}$$
; satisfies $p_j = 1$:

Let $D_i := B_d(\mathbf{u}_i) \cap \begin{bmatrix} i & 1 \\ j=1 \end{bmatrix} B_d(\mathbf{u}_j)$ and note that fD_ig forms a partition of X^n .

$$\Pr[(\mathbf{X}; \hat{\mathbf{X}}) < d] = \sum_{\substack{j=1 \ \mathbf{x} \ge D_j \ \mathbf{X} \ge B_d(\mathbf{x}) \ \mathbf{X}}}^{\mathbf{X}} Z \qquad \qquad \downarrow \\ \sum_{\substack{j=1 \ \mathbf{x} \ge D_j \ \mathbf{X} \ge B_d(\mathbf{x}) \ \mathbf{X} \ge B_d(\mathbf{x})}}^{\mathbf{X}} dP_{\mathbf{X}}(\hat{\mathbf{x}}) \qquad dP_{\mathbf{X}}(\mathbf{x}) \qquad * \mathbf{X} \ \mathcal{P} \hat{\mathbf{X}}$$

$$\sum_{\substack{j=1 \ \mathbf{x} \ge D_j \ \mathbf{X} \ge D_j \ \mathbf{X} \ge B_d(\mathbf{x}) = \mathbf{X} \ge B_d(\mathbf{x})}}^{\mathbf{X}} p_j dP_{\mathbf{X}}(\mathbf{x}) \qquad * \min_{\mathbf{x} \ge D_j} P_{\mathbf{X}} fB_d(\mathbf{x}) g \quad p_j$$

$$\sum_{\substack{j=1 \ \mathbf{X} \ge D_j \ \mathbf{X} \ge B_d(\mathbf{x})}}^{\mathbf{X}} p_j^2 \qquad \frac{1}{M} \qquad \frac{1}{M(d)} \qquad * \text{ Cauchy-Schwarz & } M \quad M(d)$$

- Also used a greedy construction (à la Feinstein's lemma in information spectrum analysis)
- But we removed space B_d (

- Also used a greedy construction (à la Feinstein's lemma in information spectrum analysis)
- But we removed space B_d (

- Also used a greedy construction (à la Feinstein's lemma in information spectrum analysis)
- But we removed space $B_d(\mathbf{u}_k)$ X^n successively instead of codewords successively.
- Showed through simple algebraic manipulations that for any X,

$$F_{\mathbf{X}}(d) = \operatorname{Pr} (\mathbf{X}_{f} \hat{\mathbf{X}}) < d \frac{1}{M(d)} = M(d) \sup_{\mathbf{X}} \frac{1}{F_{\mathbf{X}}(d)}$$
:

- Also used a greedy construction (à la Feinstein's lemma in information spectrum analysis)
- But we removed space $B_d(\mathbf{u}_k)$ X^n successively instead of codewords successively.
- Showed through simple algebraic manipulations that for any X,

$$F_{\mathbf{X}}(d) = \operatorname{Pr} (\mathbf{X} / \hat{\mathbf{X}}) < d \frac{1}{M(d)} =) M(d) \sup_{\mathbf{X}} \frac{1}{F_{\mathbf{X}}(d)}$$
:

 \blacksquare Converse part is the same as for discrete alphabets (hinges on uniform distribution over optimal code $\mathcal C$)

- Also used a greedy construction (à la Feinstein's lemma in information spectrum analysis)
- But we removed space $B_d(\mathbf{u}_k)$ X^n successively instead of codewords successively.
- Showed through simple algebraic manipulations that for any X,

$$F_{\mathbf{X}}(d) = \operatorname{Pr} (\mathbf{X} / \hat{\mathbf{X}}) < d \frac{1}{M(d)} =) M(d) \sup_{\mathbf{X}} \frac{1}{F_{\mathbf{X}}(d)}$$
:

- \blacksquare Converse part is the same as for discrete alphabets (hinges on uniform distribution over optimal code $\mathcal C$)
- In summary,

$$M(d) = \sup_{\mathbf{X}} \frac{1}{F_{\mathbf{X}}(d)}$$

Refined Asymptotics I

Refined Asymptotics I

Refined Asymptotics II

Corollary (Upper Bound on Rate)

For any arbitrary bounded distance measure, the optimal code rate for distance *n* is

$$R_n(\) I_{X^n}(\) + O = \frac{1}{p_n} :$$

where the large-deviations rate function is

$$I_{X^n}(a) := \sup fa$$
 ' $_{X^n}(\)g$; and ' $_{X}(\) := \log \stackrel{\mathsf{h}}{\in} e^{(X;\stackrel{\mathsf{h}}{X})}$:

Proof.

Careful tilting of probability distributions.

First-Order Asymptotics

First-Order Asymptotics

Corollary (First-Order Asymptotics on Rate)

If the sequence of distance measures satisfies

$$\sup_{n\geq N} \max_{x^n, x^n} \frac{1}{n} (x^n; x^n) < 1;$$

then we have

$$\limsup_{n \neq 1} R_n() = \limsup_{n \neq 1} I_{X^n}(); \quad and$$

$$\liminf_{n \neq 1} R_n() = \liminf_{n \neq 1} I_{X^n}()$$

where the large-deviations rate function is

$$I_{X^n}(a) := \sup fa$$
 ' $_{X^n}()g$; and ' $_{X}() := \log E e^{(X;\hat{X})}$:

Corollary (Hamming Bound for Finite $j \times j$)

$$M(d) \quad \inf_{>0} \frac{jXj^n}{B_{(d-1)=2}(\mathbf{0})} \quad \frac{jXj^n}{B_{b(d-1)=2c}(\mathbf{0})}$$

Corollary (Hamming Bound for Finite $j \times j$)

$$M(d) \quad \inf_{>0} \frac{jXj^n}{B_{(d-)=2}(\mathbf{0})} \quad \frac{jXj^n}{B_{b(d-1)=2c}(\mathbf{0})}$$

Proof: (Due to V. Guruswami).

Let
$$e = (d)$$
)=2. Then
$$jB_e(\mathbf{0})jF_{\mathbf{X}}(d) = \underset{\mathbf{x} \ \mathbf{y} \geq B_e(\mathbf{x})}{\times} P_{\mathbf{X}}(\mathbf{y}) P_{\mathbf{X}}(\mathbf{z})$$

Corollary (Hamming Bound for Finite $j \times j$)

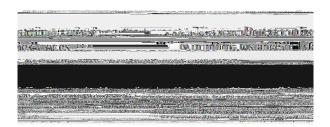
$$M(d) \quad \inf_{>0} \frac{jXj^n}{B_{(d-)=2}(\mathbf{0})} \quad \frac{jXj^n}{B_{b(d-1)=2c}(\mathbf{0})}$$

Proof: (Due to V. Guruswami).

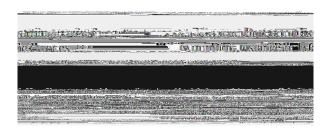
Let
$$e = (d) = 2$$
. Then
$$jB_{e}(\mathbf{0})jF_{\mathbf{X}}(d) =
\begin{aligned}
& \times & \times & \times \\
& F_{\mathbf{X}}(\mathbf{y}) & F_{\mathbf{X}}(\mathbf{z}) \\
& \times & \times & \times \\
& F_{\mathbf{X}}(\mathbf{y}) & F_{\mathbf{X}}(\mathbf{z}) \\
& \times & \times & \times & \times \\
& F_{\mathbf{X}}(\mathbf{y})F_{\mathbf{X}}(\mathbf{z}) \\
& \times & \times & \times & \times \\
& & \times & \times & \times \\
& & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times &$$

1

Related Work



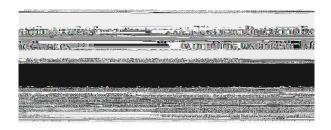
Related Work



My visit to NCTU in 2015

■ Chen, Lee and Han (2000) proved an elegant information spectrum-style result

Related Work



My visit to NCTU in 2015

Showed how to connect optimal code size/distance tradeoff and distance spectrum

$$F_{\mathbf{X}}(d) = \Pr(\mathbf{X}; \hat{\mathbf{X}}) < d$$

for different random vectors **X**.

Showed how to connect optimal code size/distance tradeoff and distance spectrum

$$F_{\mathbf{X}}(d) = \text{Pr} (\mathbf{X}; \hat{\mathbf{X}}) < d$$

for different random vectors X.

Also got an algorithm for constructing codes.

Showed how to connect optimal code size/distance tradeoff and distance spectrum

$$F_{\mathbf{X}}(d) = \Pr(\mathbf{X}; \hat{\mathbf{X}}) < d$$

for different random vectors X.

Also got an algorithm for constructing codes.

Showed how to connect optimal code size/distance tradeoff and distance spectrum

$$F_{\mathbf{X}}(d) = \text{Pr} (\mathbf{X}; \hat{\mathbf{X}}) < d$$

for different random vectors X.

Also got an algorithm for constructing codes.

Some open questions.

■ Better algorithm (improved rule for combining codewords)?

 Showed how to connect optimal code size/distance tradeoff and distance spectrum

$$F_{\mathbf{X}}(d) = \text{Pr} (\mathbf{X}; \hat{\mathbf{X}}) < d$$

for different random vectors X.

Also got an algorithm for constructing codes.

Some open questions.

- Better algorithm (improved rule for combining codewords)?
- Better bounds for the current algorithm?

 Showed how to connect optimal code size/distance tradeoff and distance spectrum

$$F_{\mathbf{X}}(d) = \text{Pr} (\mathbf{X}; \hat{\mathbf{X}}) < d$$

for different random vectors X.

Also got an algorithm for constructing codes.

Some open questions.

- Better algorithm (improved rule for combining codewords)?
- Better bounds for the current algorithm?
- Improved codes?

 Showed how to connect optimal code size/distance tradeoff and distance spectrum

$$F_{\mathbf{X}}(d) = \Pr$$

Thanks!