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Solving Sudoku with a Factor Graph

I Consider any constraint satisfaction problem with observed entries

I One can writef (x) as the product of indicator functions
I Some factors forcex to be valid (i.e., satisfy constraints)
I Other factors forcex to be compatible with observed values
I Summing overx counts the # of valid compatible sequences

I Low-complexity peeling solution

I Set elements ofx one at a time
I Each step looks fori 2 [n] and x0 2 X such that:

I For currently set variables,f (x) = 0 for all x i 2 X n x0

I Sudoku's unique solution implies thatx i = x0 correct
I Fix x i = x0 and repeat until all values �xed
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Boolean Satis�ability: K-SAT
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Boolean Satis�ability: K-SAT

I One instance of3-SAT is given, for example, by

f (x) = ( x1 _ x3 _ x7) ^ (x1 _ x2 _ x5) ^ (x2 _ x4 _ x6) :

I In the FG, clausea 2 [m] is enforced by the functionf a

I Marginalization allows uniform sampling from valid set

I For i = 1 ; 2; : : : ; n, �x x j for j < i and compute marginal

gi (x i ) =
1
Z i

X

x i +1 ;:::;x n

f (x) = P (X i = x i jX 1 = x1; : : : ; X i � 1 = x i � 1)

I Then, samplex i � gi (�) and repeat

I This algorithm has low complexity if factor graph forms a tree

I If not a tree, use approximate marginal from belief propagation
I This is related to BP-guided decimation [MM09]
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Low-Density Parity-Check (LDPC) Codes

parity
checks

permutation

code bits
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Low-Density Parity-Check (LDPC) Codes

parity
checks

permutation

code bits

I Linear codes de�ned byxH T = 0 for all c.w. x 2 C � f 0; 1gn

I H is anm � n sparse parity-check matrix for the code
I Code bits and parity checks associated with cols/rows ofH

I Factor graph:H is the biadjacency matrix for variable/factor nodes

I Ensemble de�ned by con�guration model for random graphs
I Checks de�ne factors:f even (xd

1) = I (x1 � � � � � xd = 0)
I Let x@a be the subvector of variables in thea-th check and

f (x1; : : : ; xn ) =

 
mY

a=1

f even (x@a)

!  
nY

i =1

PY jX (yi jx i )

!
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A Little History
Robert Gallager introduced LDPC codes in 1962 paper

Judea Pearl de�ned general belief-propagation in 1986 paper
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Simple Message-Passing Decoding for the BEC

I Constraint nodes de�ne the valid patterns
I Circles represent a single value shared by factors

I Squares assert attached variables sum to 0 mod 2

I Iterative decoding on the binary erasure channel (BEC)
I Messages passed in phases: bit-to-check and check-to-bit
I Each output message depends on other input messages
I Each message is either the correct value or an erasure

I Message passing rules for the BEC
I Bits pass an erasure only if all other inputs are erased
I Checks pass the correct value only if all other inputs are correct
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Computation Graph and Density Evolution
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Computation Graph and Density Evolution
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EXtrinsic Information Transfer (EXIT) Curves

I Introduced by ten Brink in 1999 to understand iterative decoding

I For the BEC, the MAP EXIT curve is

hMAP (" ) ,
1
n

nX

i =1

H (X i jY � i (" ))

I EXIT Area Theorem [ABK04]

1
n

H (X jY (" )) =
Z "

0
hMAP (� )d�

I BP EXIT curve

hBP (" ) ,
1
n

nX

i =1

H
�
X i j� BP

i (Y � i (" ))
�

I where� BP
i (Z ) is the BP estimate ofX i givenZ

I Data processing inequality:hBP (" ) � hMAP (" )
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EXtrinsic Information Transfer (EXIT) Curves
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I (3,4)-regular LDPC code
I Codeword(X 1; : : : ; X n )
I Received(Y1; : : : ; Yn )

I BP EXIT curve via DE
I This code:hBP (" ) = ( x1 (" ))3

I 0 below BP threshold 0.647

I MAP EXIT curve is extrinsic en-
tropy H (X i jY � i ) vs. channel"

I 0 below MAP threshold 0.746
I Area under curve equals rateR
I Upper bounded by BP EXIT

I MAP threshold upper bound"MAP

I " s.t. area under BP EXIT isR
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Universality over Unknown Parameters

I The Achievable Channel Parameter Region (ACPR)
I For a sequence of coding schemes involving one or more

parameters, the parameter region where decoding succeeds in
the limit

I In contrast, a capacity region is a rate region for �xed channels

I Properties
I For �xed encoders, the ACPR dependson the decoders
I For example, one has BP-ACPR� MAP-ACPR
I Often, 9 unique maximal ACPR given by information theory

I Universality
I A sequence of encoding/decoding schemes is called universal if:

its ACPR equals the optimal ACPR
I Channel parameters are assumed unknown at the transmitter
I At the receiver, the channel parameters are easily estimated
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2-User Binary-Input Gaussian Multiple Access Channel

X 1

X 2

+

h1

h2

Z � N (0; 1)

Y

I Fixed noise variance
I Real channel gainsh1 and h2 not known at transmitter
I Each code has rateR

I MAC-ACPR denotes the information-theoretic optimal region
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Spatially-Coupled Factor Graph for Joint Decoder
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Spatially-Coupled Factor Graph for Joint Decoder
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DE Performance of the Joint Decoder
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DE Performance of the Joint Decoder
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DE Performance of the Joint Decoder
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DE Performance of the Joint Decoder
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DE Performance of the Joint Decoder



Capacity Achieving Codes: There and Back Again 54 / 65

Outline

Introduction

Factor Graphs

Message Passing

Applications of Factor Graphs

Applications of EXIT Curves

Spatially-Coupled Factor Graphs

Universality for Multiuser Scenarios

Abstract Formulation of Threshold Saturation
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Single Monotone Recursion

I Smooth increasingf : [0; 1]! [0; 1]

I Discrete-time recursion

x ( ` +1) = f (x ( ` ) )

I \Potential energy" Us(x)

Us(x) =
Z x

0

�
z � f (z)

�
dz =

x2

2
� F (x)

I Continuous (small step) dynamics

d
dt

x(t) = f
�
x(t)

�
� x(t) = �r Us

�
x(t)

�

I Lyapunov stability

d
dt

Us
�
x(t)

�
= �

�
x(t) � f (x(t))

� 2

Both # 0 i� no �xed points in (0; 1]
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