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The Factor Graph and Leaf Removal
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Constraint Satisfaction and Zero-One Factors

I A non-negative functionf : X n ! R de�nes a distribution onX n :

P(x) , P(X 1 = x1; : : : ; X n = xn )

=
1
Z

f (x) ,
1
Z

mY

a=1

f a(x@a);

I wherex@a is the subvector of variables involved in factora
I and Z ,

P
x f (x) is called the partition function

I For Constraint Satisfaction Problems (CSPs)
I All factors f a(x@a) take values inf 0; 1g
I The set of valid con�gurations isf x 2 X n jf (x) = 1 g
I Thus, Z equals the number of valid con�gurations
I P(x) is uniform over the set of valid con�gurations
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Outline

Introduction

Factor Graphs

Message Passing

Applications of Factor Graphs

Applications of EXIT Curves

Spatially-Coupled Factor Graphs

Universality for Multiuser Scenarios
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Marginalization via Belief Propagation

I Factor GraphG = ( V [ F; E )

I Variable nodesV , Factor nodesF
I Edges:(i; a) 2 E � V � F
I F (i )=V(a) = set of neighbors for node-i=a

I Messages:� ( t )
i ! a(x i ) and �̂ ( t )

a! i (x i )

I variable-i to factor-a message

�̂ ( t )
b1 ! i (x i )

�̂ ( t )
b2 ! i (x i )

�̂ ( t )
b3 ! i (x i )

i � ( t +1)
i ! a (x i ) =

Y

b2 F ( i )na

�̂ ( t )
b! i (x i )

I factor-a to variable-i message
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i � ( t +1)
i ! a (x i ) =

Y

b2 F ( i )na

�̂ ( t )
b! i (x i )

I factor-a to variable-i message

� ( t )
j 1 ! a(x j 1 )

� ( t )
j 2 ! a(x j 2 )

� ( t )
j 3 ! a(x j 3 )

a �̂ ( t )
a! i (x i ) =

X

x V ( a ) n i

f a(xV (a) )
Y

j 2 V (a)ni

� ( t )
j ! a(x j )

I variable-i marginal

�̂ ( t )
b1 ! i (x i )

�̂ ( t )
b2 ! i (x i )

�̂ ( t )
b3 ! i (x i )

i �̂ ( t )
b4 ! i (x i )

� ( t +1)
i (x i ) =

Y

b2 F ( i )

�̂ ( t )
b! i (x i )
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Marginalization via Belief Propagation: Example

iteration 1: factor to variable

�̂ (1)
4! 4(x4) =

X

x 5

f 4(x4; x5)� (1)
5! 4(x i )

=
X

x 5

f 4(x4; x5)

�̂ (1)
3! 4(x4) = f 3(x4)

iteration 2: variable to factor

� (2)
4! 2(x4) = �̂ (1)

4! 4(x4)�̂ (1)
3! 4(x4)

= f 3(x4)
X

x 5

f 4(x4; x5)

� (2)
6! 2(x6) = 1

x1

f 1 f 2

x2 x3 x4 x6

f 3 f 4

x5

�
(2

)
4!

2

� (2)6!
2

�̂
(1

)
3!

4

�̂ (1)4!
4

�
(1)
5!

4
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Solving Sudoku with a Factor Graph

I Consider any constraint satisfaction problem with observed entries

I One can writef (x) as the product of indicator functions
I Some factors forcex to be valid (i.e., satisfy constraints)
I Other factors forcex to be compatible with observed values
I Summing overx counts the # of valid compatible sequences

I Low-complexity peeling solution

I Set elements ofx one at a time
I Each step looks fori 2 [n] and x0 2 X such that:

I For currently set variables,f (x) = 0 for all x i 2 X n x0

I Sudoku's unique solution implies thatx i = x0 correct
I Fix x i = x0 and repeat until all values �xed
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I For currently set variables,f (x) = 0 for all0f2 -16.113 678 Tf 8.717 2 -1t87Td -39.fhs8826 Tf9i(110 0848.717 2 -e-6ble)96210 g 0 G
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0 g 0 G
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Boolean Satis�ability: K-SAT

I One instance of3-SAT is given, for example, by

f (x) = ( x1 _
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Boolean Satis�ability: K-SAT

I One instance of3-SAT is given, for example, by

f (x) = ( x1 _ x3 _ x7) ^ (x1 _ x2 _ x5) ^ (x2 _ x4 _ x6) :

I In the FG, clausea 2 [m] is enforced by the functionf a

I Marginalization allows uniform sampling from valid set

I For i = 1 ; 2; : : : ; n, �x x j for j < i and compute marginal

gi (x i ) =
1
Z i

X

x i +1 ;:::;x n

f (x) = P (X i = x i jX 1 = x1; : : : ; X i � 1 = x i � 1)

I Then, samplex i � gi (�) and repeat

I This algorithm has low complexity if factor graph forms a tree

I If not a tree, use approximate marginal from belief propagation
I This is related to BP-guided decimation [MM09]
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Low-Density Parity-Check (LDPC) Codes

parity
checks

permutation

code bits
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Low-Density Parity-Check (LDPC) Codes

parity
checks

permutation

code bits

I Linear codes de�ned byxH T = 0 for all c.w. x 2 C � f 0; 1gn

I H is anm � n sparse parity-check matrix for the code
I Code bits and parity checks associated with cols/rows ofH

I Factor graph:H is the biadjacency matrix for variable/factor nodes

I Ensemble de�ned by con�guration model for random graphs
I Checks de�ne factors:f even (xd

1) = I (x1 � � � � � xd = 0)
I Let x@a be the subvector of variables in thea-th check and

f (x1; : : : ; xn ) =

 
mY

a=1

f even (x@a)

!  
nY

i =1

PY jX (yi jx i )

!
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A Little History
Robert Gallager introduced LDPC codes in 1962 paper

Judea Pearl de�ned general belief-propagation in 1986 paper
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Simple Message-Passing Decoding for the BEC

I Constraint nodes de�ne the valid patterns
I Circles represent a single value shared by factors

I Squares assert attached variables sum to 0 mod 2

I Iterative decoding on the binary erasure channel (BEC)
I Messages passed in phases: bit-to-check and check-to-bit
I Each output message depends on other input messages
I Each message is either the correct value or an erasure

I Message passing rules for the BEC
I Bits pass an erasure only if all other inputs are erased
I Checks pass the correct value only if all other inputs are correct

?

?

1

0





Capacity Achieving Codes: There and Back Again 29 / 65

Simple Message-Passing Decoding for the BEC

I Constraint nodes de�ne the valid patterns
I Circles represent a single value shared by factors

I Squares assert attached variables sum to 0 mod 2

I Iterative decoding on the binary erasure channel (BEC)
I Messages passed in phases: bit-to-check and check-to-bit
I Each output message depends on other input messages
I Each message is either the correct value or an erasure

I Message passing rules for the BEC
I Bits pass an erasure only if all other inputs are erased
I



Capacity Achieving Codes: There and Back Again 29 / 65

Simple Message-Passing Decoding for the BEC

I Constraint nodes de�ne the valid patterns
I Circles represent a single value shared by factors

I Squares assert attached variables sum to 0 mod 2

I Iterative decoding on the binary erasure channel (BEC)
I Messages passed in phases: bit-to-check and check-to-bit
I Each output message depends on other input messages
I Each message is either the correct value or an erasure

I Message passing rules for the BEC
I Bits pass an erasure only if all other inputs are erased
I Checks pass the correct value only if all other inputs are correct

1

?

?

1

1

0

?

?







Capacity Achieving Codes: There and Back Again 30 / 65

Computation Graph and Density Evolution
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Computation Graph and Density Evolution
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EXtrinsic Information Transfer (EXIT) Curves

I Introduced by ten Brink in 1999 to understand iterative decoding

I For the BEC, the MAP EXIT curve is

hMAP (" ) ,
1
n

nX

i =1

H (X i jY � i (" ))

I EXIT Area Theorem [ABK04]

1
n

H (X jY (" )) =
Z "

0
hMAP (� )d�

I BP EXIT curve

hBP (" ) ,
1
n

nX

i =1

H
�
X i j� BP

i (Y � i (" ))
�

I where� BP
i (Z ) is the BP estimate ofX i givenZ

I Data processing inequality:hBP (" ) � hMAP (" )
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EXtrinsic Information Transfer (EXIT) Curves

0:5 0:6 0:7 0:8 0:9 1
0

0:2

0:4

0:6

0:8

1

"

hB
P

("
)

I (3,4)-regular LDPC code
I Codeword(X 1; : : : ; X n )
I Received(Y1; : : : ; Yn )

I BP EXIT curve via DE
I This code:hBP (" ) = ( x1 (" ))3

I 0 below BP threshold 0.647

I MAP EXIT curve is extrinsic en-
tropy H (X i jY � i ) vs. channel"

I 0 below MAP threshold 0.746
I Area under curve equals rateR
I Upper bounded by BP EXIT

I MAP threshold upper bound"MAP

I " s.t. area under BP EXIT isR
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EXtrinsic Information Transfer (EXIT) Curves

0:5 0:6 0:7 0:8 0:9 1
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What is Spatial Coupling?
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Spatially-Coupled LDPC Codes:(l; r; L; w ) Ensemble

:::

:::

� 0

� 0
0

� L � 2 � 1 0 1 2 L::: :::

:::

:::

� � L

� 0
� L

:::

:::

� � 2

� 0
� 2

:::

:::

� � 1

� 0
� 1

:::

:::

� 1

� 0
1
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Universality over Unknown Parameters

I The Achievable Channel Parameter Region (ACPR)
I For a sequence of coding schemes involving one or more

parameters, the parameter region where decoding succeeds in
the limit

I In contrast, a capacity region is a rate region for �xed channels

I Properties
I For �xed encoders, the ACPR dependson the decoders
I For example, one has BP-ACPR� MAP-ACPR
I Often, 9 unique maximal ACPR given by information theory

I Universality
I A sequence of encoding/decoding schemes is called universal if:

its ACPR equals the optimal ACPR
I Channel parameters are assumed unknown at the transmitter
I At the receiver, the channel parameters are easily estimated

0:8 1 1:2 1:4 1:6 1:8 2 2:2
0:8

1

1:2

1:4

1:6

1:8

2

2:2

MAC-ACPR boundary
for rate1=2

1
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Universality over Unknown Parameters

I The Achievable Channel Parameter Region (ACPR)
I
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2-User Binary-Input Gaussian Multiple Access Channel

X 1

X 2

+

h1

h2

Z � N (0; 1)

Y

I Fixed noise variance
I Real channel gainsh1 and h2 not known at transmitter
I Each code has rateR

I MAC-ACPR denotes the information-theoretic optimal region
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Spatially-Coupled Factor Graph for Joint Decoder
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Spatially-Coupled Factor Graph for Joint Decoder
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DE Performance of the Joint Decoder

0:8 0:9 1 1:1 1:2 1:3 1:4 1:5 1:6 1:7 1:8 1:9 2 2:1 2:2
0:8

0:9

1

1:1

1:2

1:3

1:4

1:5

1:6

1:7

1:8

1:9

2

2:1

2:2

MAC-ACPR
boundary for rate
1=2

� 1 = jh1j2

�
2

=
jh

2j
2
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DE Performance of the Joint Decoder
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DE Performance of the Joint Decoder
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BP-ACPR, SC
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DE Performance of the Joint Decoder

0:8 0:9 1 1:1 1:2 1:3 1:4 1:5 1:6
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DE Performance of the Joint Decoder
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Outline

Introduction

Factor Graphs

Message Passing

Applications of Factor Graphs

Applications of EXIT Curves

Spatially-Coupled Factor Graphs

Universality for Multiuser Scenarios

Abstract Formulation of Threshold Saturation
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Single Monotone Recursion

I Smooth increasingf : [0; 1]! [0; 1]

I Discrete-time recursion

x ( ` +1) = f (x ( ` ) )

I \Potential energy" Us(x)

Us(x) =
Z x

0

�
z � f (z)

�
dz =

x2

2
� F (x)

I Continuous (small step) dynamics

d
dt

x(t) = f
�
x(t)

�
� x(t) = �r Us

�
x(t)

�

I Lyapunov stability

d
dt

Us
�
x(t)

�
= �

�
x(t) � f (x(t))

� 2

Both # 0 i� no �xed points in (0; 1]

0 0:2 0:4 0:6 0:8 1
0

0:2

0:4

0:6

0:8

1
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Single Monotone Recursion
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Coupled Monotone Recursion (1)

I Coupled recursionx ( ` +1) = Tx( ` ) with x ( ` ) =
�

x ( ` )
0 ; x ( ` )

1 ; : : :
�

and

Tx , A> f
�
Ax

�
;

where[f (x)] i = f (x i ) and A averagesw adjacent values

A =
1
w

2

4
1 1 � � � 1 0 � � �
0 1 1

. . . 1
. . ....

. . .
. . .

. . .
. . .

. . .

3

5

I i.e., avg rightw positions, applyf , then avg leftw positions

I Coupled potential:Uc-1.245 Td d67 
115e

A
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Coupled Monotone Recursion (2)

I Properties ofT (note: x � y , x i � yi for all i )

I T is monotone:x � y impliesTx � Ty
I T preserves spatial order:x i +1 � x i implies[Tx]i +1 � [Tx]i

I For x (0) = 1 , iteratesx ( ` )
i are decreasing iǹ and increasing ini

I Spatial limit exists:x ( ` )
1 = lim i !1 x ( ` )

i

I Iteration limit exists: x (1 )
i = lim ` !1 x ( ` )

i

I Iteration limit satis�es �xed point: x (1 ) = Tx(1 )

I Double limit satis�es �xed point: x (1 )
1 = f

�
x (1 )

1
�
















































	
	
	
	
	
	
	
	

